Plant and Soil

, 320:231

Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants

  • Jozef Kováčik
  • Bořivoj Klejdus
  • Josef Hedbavny
  • František Štork
  • Martin Bačkor
Regular Article


Cadmium and copper uptake and its consequence for activity of selected enzymes of phenolic metabolism, phenolic acids accumulation, quantity of mineral nutrients and stress-related parameters in Matricaria chamomilla plants exposed to 60 μM and 120 μM for 7 days has been studied. Cu content in the above-ground biomass was ca. 10-fold lower compared to Cd and amount of Cd in the methanol-soluble fraction was lower than in the water-soluble fraction. “Intra-root” Cd represented 68% and 63% of total Cd content at 60 μM and 120 μM, but no difference was observed in Cu-exposed roots. Cu excess had more pronounced effect on shikimate dehydrogenase, cinnamyl alcohol dehydrogenase, polyphenol oxidase and ascorbate peroxidase activity mainly in the roots. Among eight detected benzoic acid derivatives and four cinnamic acid derivatives, the latter were preferentially accumulated in response to Cd excess. Content of salicylic acid increased in all variants. Amount of superoxide was elevated in both the rosettes (preferentially by Cu) and roots (preferentially by Cd). Accumulation of Ca and Mg was not affected by excess of metals, while potassium decreased in both the rosettes and roots (Cu caused stronger depletion). Amount of Fe increased in the roots in response to both metals (more expressively in Cu-treated ones). Present study using other metabolic parameters (and supplementing our previous studies) has confirmed higher Cu toxicity for chamomile plants, to support its strong pro-oxidant properties. These observations as complex metabolic responses are discussed.


Chamomile Heavy metals Oxidative stress Phenols Reactive oxygen species 



ascorbate peroxidase


cinnamyl alcohol dehydrogenase


guaiacol peroxidase




phenylalanine ammonia-lyase


polyphenol oxidase


reactive oxygen species


shikimate dehydrogenase


  1. Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111. doi:10.1023/A:1014995321560 CrossRefGoogle Scholar
  2. Ali MB, Singh N, Shohael AM, Hahn EJ, Paek K-Y (2006) Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci 171:147–154. doi:10.1016/j.plantsci.2006.03.005 CrossRefGoogle Scholar
  3. Aquino-Bolaños E, Mercado-Silva E (2004) Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama. Postharvest Biol Technol 33:275–283. doi:10.1016/j.postharvbio.2004.03.009 CrossRefGoogle Scholar
  4. Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215. doi:10.1046/j.1469-8137.2002.00506.x CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  6. Diaz J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum anuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179–188. doi:10.1016/S0168-9452(01)00410-1 CrossRefGoogle Scholar
  7. dos Santos WD, Ferrarese MLL, Ferrarese-Filho O (2006) High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiol Biochem 44:511–515. doi:10.1016/j.plaphy.2006.08.004 PubMedCrossRefGoogle Scholar
  8. Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620. doi:10.1016/0003-2697(76)90488-7 PubMedCrossRefGoogle Scholar
  9. Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113:507–514. doi:10.1034/j.1399-3054.2001.1130409.x CrossRefGoogle Scholar
  10. Hsu YT, Kao CH (2007) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:231–241. doi:10.1007/s11104-007-9357-7 CrossRefGoogle Scholar
  11. Ke WS, Xiong ZT, Xie MJ, Luo Q (2007) Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations. Plant Soil 292:291–304. doi:10.1007/s11104-007-9229-1 CrossRefGoogle Scholar
  12. Klejdus B, Vitamvásová D, Kubáň V (1999) Reversed-phase high-performance liquid chromatographic determination of isoflavones in plant materials after isolation by solid-phase extraction. J Chromatogr A 839:261–263. doi:10.1016/S0021-9673(99)00110-7 CrossRefGoogle Scholar
  13. Kováčik J, Tomko J, Bačkor M, Repčák M (2006) Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regul 50:239–247. doi:10.1007/s10725-006-9141-3 CrossRefGoogle Scholar
  14. Kováčik J, Bačkor M (2007) Phenylalanine ammonia-lyase and phenolic compounds in chamomile tolerance to cadmium and copper excess. Water Air Soil Pollut 185:185–193. doi:10.1007/s11270-007-9441-x CrossRefGoogle Scholar
  15. Kováčik J, Klejdus B, Bačkor M, Repčák M (2007) Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci 172:393–399. doi:10.1016/j.plantsci.2006.10.001 CrossRefGoogle Scholar
  16. Kováčik J, Bačkor M, Kaduková J (2008a) Physiological responses of Matricaria chamomilla to cadmium and copper excess. Environ Toxicol 23:123–130. doi:10.1002/tox.20315 PubMedCrossRefGoogle Scholar
  17. Kováčik J, Grúz J, Bačkor M, Tomko J, Strnad M, Repčák M (2008b) Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot 62:145–152. doi:10.1016/j.envexpbot.2007.07.012 CrossRefGoogle Scholar
  18. Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615. doi:10.1007/s00299-007-0490-9 PubMedCrossRefGoogle Scholar
  19. Kováčik J, Bačkor M (2008) Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake. Ecotoxicology 17:471–479. doi:10.1007/s10646-008-0200-6 PubMedCrossRefGoogle Scholar
  20. Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757. doi:10.1104/pp.103.032953 PubMedCrossRefGoogle Scholar
  21. Lavid N, Schwartz A, Lewinsohn E, Tel-Or E (2001) Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae). Planta 214:189–196PubMedCrossRefGoogle Scholar
  22. Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39:413–419. doi:10.1007/s002440010122 PubMedCrossRefGoogle Scholar
  23. Marusek CM, Trobaugh NM, Flurkey WH, Inlow JK (2006) Comparative analysis of polyphenol oxidase from plant and fungal species. J Inorg Biochem 100:108–123. doi:10.1016/j.jinorgbio.2005.10.008 PubMedCrossRefGoogle Scholar
  24. Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151–165. doi:10.1007/s11104-008-9642-0 CrossRefGoogle Scholar
  25. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9 PubMedCrossRefGoogle Scholar
  26. Qian M, Li X, Shen Z (2005) Adaptive copper tolerance in Elsholtzia haichowensis involves production of Cu-binding thiol peptides. Plant Growth Regul 47:65–73. doi:10.1007/s10725-005-1535-0 CrossRefGoogle Scholar
  27. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. doi:10.1016/0891-5849(95)02227-9 PubMedCrossRefGoogle Scholar
  28. Ros Barceló A (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132. doi:10.1016/S0074-7696(08)61609-5 PubMedCrossRefGoogle Scholar
  29. Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118:21–28. doi:10.1034/j.1399-3054.2003.00068.x PubMedCrossRefGoogle Scholar
  30. Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YX, Hu TD (2008) An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302:163–174. doi:10.1007/s11104-007-9463-6 CrossRefGoogle Scholar
  31. Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8. doi:10.1016/j.envexpbot.2007.10.028 CrossRefGoogle Scholar
  32. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336. doi:10.1016/0891-5849(94)00159-H PubMedCrossRefGoogle Scholar
  33. Tolrà RP, Poschenrieder C, Luppi B, Barceló J (2005) Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosela L. Environ Exp Bot 54:231–238. doi:10.1016/j.envexpbot.2004.07.006 CrossRefGoogle Scholar
  34. Uraguchi S, Watanabe I, Yoshitomi A, Kiyono M, Kuno K (2006) Characteristics of cadmium accumulation and tolerance in novel Cd-accumulationg crops, Avena strigosa and Crotalaria juncea. J Exp Bot 57:2955–2965. doi:10.1093/jxb/erl056 PubMedCrossRefGoogle Scholar
  35. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. doi:10.1016/j.ecoenv.2005.03.013 PubMedCrossRefGoogle Scholar
  36. Vasconcelos MT, Azenha M, de Freitas V (1999) Role of polyphenols in copper complexation in red wines. J Agric Food Chem 47:2791–2796. doi:10.1021/jf981032x PubMedCrossRefGoogle Scholar
  37. Wang Z, Zhang YX, Huang ZB, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149. doi:10.1007/s11104-008-9641-1 CrossRefGoogle Scholar
  38. Wójcik M, Skórzyńska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–155. doi:10.1007/s10725-005-5816-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jozef Kováčik
    • 1
  • Bořivoj Klejdus
    • 2
  • Josef Hedbavny
    • 2
  • František Štork
    • 1
  • Martin Bačkor
    • 1
  1. 1.Department of Botany, Institute of Biology and Ecology, Faculty of ScienceP. J. Šafárik UniversityKošiceSlovakia
  2. 2.Department of Chemistry and BiochemistryMendel University of Agriculture and Forestry BrnoBrnoCzech Republic

Personalised recommendations