Advertisement

Plant and Soil

, Volume 331, Issue 1–2, pp 439–451 | Cite as

Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy

  • Katarina Vogel-MikušEmail author
  • Iztok Arčon
  • Alojz Kodre
Regular Article

Abstract

The cadmium hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) can accumulate unusually high amounts of Cd (>1,000 μg g−1 dry weight) in its seeds without drastically affecting seed viability. As embryonic tissues are the most sensitive to Cd toxicity, the aim of this study was to investigate the Cd coordination and ligand environment in seeds of field collected T. praecox using extended X-ray absorption fine structure (EXAFS), and to compare the Cd ligand environment to that in the vegetative tissues of the plant. In intact seeds and isolated embryos, almost two thirds of the Cd ligands were thiol groups (Cd-S-C-). In addition, there was coordination to phosphate groups via bridging oxygens (Cd-O-P-), as for phytate, although this ligand was not observed in the vegetative organs and tissues. In roots and shoots up to 80% of the Cd ligands were oxygen ligands that are provided by the cell walls and by organic acids stored in vacuoles. In leaf epidermis only a slightly higher percentage of oxygen ligands was detected, as compared to the mesophyll, making vacuolar compartmentation and binding to the cell walls the main detoxification mechanisms in both of these leaf tissues.

Keywords

Hyperaccumulation EXAFS Metal pollution Cd Embryonic tissues 

Notes

Acknowledgements

We acknowledge the European Synchrotron Radiation Facility, Grenoble, France, for provision of synchrotron radiation facilities (project EC 398). This study was supported by the Slovenian Research Agency Research Programmes P1-0112 and P1-0212, and the IAEA framework of coordinated research project RC 13858 “Unification of nuclear spectrometries: integrated techniques as a new tool for materials research” (Head, Dr. Peter Kump). We would also like to thank Dr. Peter Kump and Dr. Marijan Nečemer of the Jožef Stefan Institute, Ljubljana, for EDXRF analyses of Cd in plant tissues, and Dr. Marco Vaccari for assistance in using the “BM29” ESRF beamline.

References

  1. Bhatia NP, Orlic I, Siegele R, Ashwath N, Baker AJM, Walsh KB (2003) Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytol 160:479–488CrossRefGoogle Scholar
  2. Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1498CrossRefPubMedGoogle Scholar
  3. Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol 135:1378–1387CrossRefPubMedGoogle Scholar
  4. Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455CrossRefPubMedGoogle Scholar
  5. Cakmak I, Welch RM, Hart J, Norvell WA, Oztürk L, Kochian LV (2000) Uptake and re-translocation of leaf-applied cadmium (109Cd) in diploid, tetraploid and hexaploid wheats. J Exp Bot 51:221–226CrossRefPubMedGoogle Scholar
  6. Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12CrossRefPubMedGoogle Scholar
  7. Cataldo DA, Garland TR, Wildung RE (1981) Cadmium distribution and chemical fate in soybean plants. Plant Physiol 68:835–839CrossRefPubMedGoogle Scholar
  8. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315CrossRefPubMedGoogle Scholar
  9. Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2004) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775CrossRefGoogle Scholar
  10. Ebbs S, Lau I, Ahner B, Kochian I (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214:635–640CrossRefPubMedGoogle Scholar
  11. Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167CrossRefGoogle Scholar
  12. Ernst WHO (2006) Evolution of metal tolerance in higher plants. Forest Snow Landsc Res 80:251–274Google Scholar
  13. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248Google Scholar
  14. Ernst WHO, Nelissen HJM, Ten Bookum WM (2000) Combination toxicology of metal-enriched soils: physiological responses of Zn- and Cd-resistant ecotype of Silene vulgaris on polymetallic soils. Environ Exp Bot 43:55–71CrossRefGoogle Scholar
  15. Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696CrossRefPubMedGoogle Scholar
  16. Frenkel A, Vairavamurthy A, Newville M (2001) A study of the coordination environment in aqueous cadmium-thiol complexes by EXAFS spectroscopy: experimental vs theoretical standards. J Synchrotron Radiat 8:668–671CrossRefGoogle Scholar
  17. Gardea-Torresday JL, Peralta-Videa JR, de la Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810CrossRefGoogle Scholar
  18. Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J 57:1116–1127CrossRefPubMedGoogle Scholar
  19. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506CrossRefPubMedGoogle Scholar
  20. Hernandez-Allica J, Garbisu C, Becerril JM, Barrutia O, Garcia-Plazola JI, Zhao FJ, McGrath SP (2006) Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell Environ 29:1422–1429CrossRefPubMedGoogle Scholar
  21. Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical speciation of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta, Part B: Atom Spectrosc 61:1242–1252CrossRefGoogle Scholar
  22. Kachenko AG, Bhatia NP, Siegele R, Walsh KB, Singh B (2009) Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 267:2176–2180CrossRefGoogle Scholar
  23. Karlsson T, Persson P, Skyllberg U (2005) Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulphur groups in natural organic matter. Environ Sci Technol 39:3048–3055CrossRefPubMedGoogle Scholar
  24. Kump P, Nečemer M, Vogel-Mikuš K, Rupnik Z, Ponikvar D, Pelicon P, Regvar M, Pongrac P, Simčič J, Budnar M (2007) Improvement of the XRF quantification and enhancement of the combined applications by EDXRF and Micro PIXE. First research co-ordination meeting under coordinated research project on “Unification of nuclear spectrometries: integrated techniques as a new tool for materials research”. IAEA, Vienna, pp 91–95Google Scholar
  25. Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311CrossRefGoogle Scholar
  26. Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PHM (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757CrossRefPubMedGoogle Scholar
  27. Lasat MM, Baker AJM, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn2+ absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883CrossRefPubMedGoogle Scholar
  28. Lei B, Li-Chan ECY, Oomah BD, Mazza G (2003) Distribution of cadmium-binding components in flax (Linum usitatissimum L.) seed. J Agric Food Chem 51:814–821CrossRefPubMedGoogle Scholar
  29. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20CrossRefGoogle Scholar
  30. Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736CrossRefPubMedGoogle Scholar
  31. Mendoza-Cózatl DG, Butko F, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259CrossRefPubMedGoogle Scholar
  32. Mesjazs-Przybyłowicz J, Grodzińska K, Przybyłowicz WJ, Godzik B, Szarek-Łukaszewska G (2001) Nuclear microprobe studies of elemental distribution in seeds of Biscutella laevigata L. from zinc wastes in Olkusz, Poland. Nucl Instrum Methods Phys Res, B Beam Interact Mater Atoms 181:634–639CrossRefGoogle Scholar
  33. Mitsuhashi N, Kondo M, Nakaune S, Ohnishi M, Hayashi M, Hara-Nishimura I, Richardson A, Fukaki H, Nishimura M, Mimura T (2008) Localization of myo-inositol-1-phosphate synthase to the endosperm in developing seeds of Arabidopsis. J Exp Bot 59:3069–3076CrossRefPubMedGoogle Scholar
  34. Nečemer M, Kump P, Ščančar J, Jačimović R, Simčič J, Pelicon P, Budnar M, Jeran Z, Pongrac P, Regvar M, Vogel-Mikuš K (2008) Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochim Acta, Part B: Atom Spectrosc 11:1240–1247CrossRefGoogle Scholar
  35. Oomah BD, Berekoff B, Li-Chan ECY, Mazza G, Kenaschuk EO, Daguid SD (2007) Cadmium-binding protein components of flaxseed: influence of cultivar and location. Food Chem 100:318–325CrossRefGoogle Scholar
  36. Oteugi MS, Capp R, Staehelin A (2002) Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–1327CrossRefGoogle Scholar
  37. Pavlikova D, Pavlik M, Vaščikova S, Szákova J, Tlustoš P, Vokač K, Balik J (2004) Speciation analysis and environment separation of organic compounds binding trace elements in seeds of Leuzea carthamoides (Wild.) DC. Appl Organomet Chem 18:619–625CrossRefGoogle Scholar
  38. Pickering IJ, Prince RC, George GN, Rauser WE, Wickramasinghe WA, Watson AA, Dameron CT, Dance IG, Fairlie DP, Salt DE (1999) X-ray absorption spectroscopy of cadmium phytochelatin and model systems. Biochim Biophys Acta 1429:351–364PubMedGoogle Scholar
  39. Pongrac P, Vogel-Mikuš K, Kump P, Nečemer M, Tolrà R, Poschenrieder C, Barceló J, Regvar M (2007) Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609CrossRefPubMedGoogle Scholar
  40. Ravel B, Newville M (2005) Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefPubMedGoogle Scholar
  41. Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site—indications for the direction of phytostabilisation? Environ Pollut 144:976–984CrossRefPubMedGoogle Scholar
  42. Rehr JJ, Albers RC, Zabinsky SI (1992) High-order multiple-scattering calculations of X-ray-absorption fine structure. Phys Rev Lett 69:3397–3400CrossRefPubMedGoogle Scholar
  43. Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging function for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166CrossRefPubMedGoogle Scholar
  44. Salt DE, Krämer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley, New York, pp 231–246Google Scholar
  45. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433PubMedGoogle Scholar
  46. Sarret G, Saumitou-Laparde P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826CrossRefPubMedGoogle Scholar
  47. Schat H, Llugany M, Voojis R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2382–2392CrossRefGoogle Scholar
  48. Steward N, Martin R, Engasser JM, Goerger JL (1999) A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep 19:171–176CrossRefGoogle Scholar
  49. Strasdeit H, Duhme A, Kneer R, Zenk MH, Hermes C, Nolting H (1991) Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy. J Chem Soc, Chem Commun 91:1129–1130CrossRefGoogle Scholar
  50. Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333–1347CrossRefPubMedGoogle Scholar
  51. Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta 221:928–936CrossRefPubMedGoogle Scholar
  52. van Espen PJM, Janssens KHA (1993) Spectrum evaluation. In: van Grieken RE, Markowicz AA (eds) Handbook of X-ray spectroscopy; methods and techniques. Marcel Dekker, New York, pp 181–293Google Scholar
  53. Vekemans B, Janssens K, van Espen P, Adams F (1994) Quantitative X-ray analysis system (QXAS). Distributed by the International Atomic Energy Agency, ViennaGoogle Scholar
  54. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  55. Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine. Environ Pollut 133:233–242CrossRefPubMedGoogle Scholar
  56. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371CrossRefPubMedGoogle Scholar
  57. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Simčič J, Pelicon J, Budnar M, Povh B, Regvar M (2007) Localisation and quantification of elements within seeds of the Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Pollut 147:50–59CrossRefPubMedGoogle Scholar
  58. Vogel-Mikuš K, Simčič J, Pelicon P, Budnar M, Kump P, Nečemer M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Regvar M (2008a) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496CrossRefPubMedGoogle Scholar
  59. Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Simčič J, Pelicon P, Budnar M (2008b) Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721CrossRefPubMedGoogle Scholar
  60. Wójcik M, Vangronsveld J, D’Haen J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens I. Growth parameter, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–161Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Katarina Vogel-Mikuš
    • 1
    Email author
  • Iztok Arčon
    • 2
    • 3
  • Alojz Kodre
    • 4
    • 3
  1. 1.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.University of Nova GoricaNova GoricaSlovenia
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia
  4. 4.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations