Advertisement

Plant and Soil

, Volume 330, Issue 1–2, pp 73–89 | Cite as

Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients

  • Tuomo Kalliokoski
  • Taina Pennanen
  • Pekka Nygren
  • Risto Sievänen
  • Heljä-Sisko Helmisaari
Regular Article

Abstract

We studied fine roots and ectomycorrhizas in relation to aboveground tree and stand characteristics in five mixed Betula pendula Roth, Picea abies (L.) H. Karst., and Pinus sylvestris L. stands in Southern Finland. The stands formed gradients of developmental stage (15-, 30-, and 50-year-old stands) in the stands of medium fertility, and of site fertility in the young stands (30-year-old fertile, medium fertile, and least fertile stands). The biomass of the external hyphae of ectomycorrhizas (ECM) was the highest, and the diversity of the fungal community the lowest, in the most fertile stand. The vertical distributions of fine roots of the three tree species were mostly overlapping, indicating high inter-specific belowground competition in the stands. We did not find any clear trends in the fine root biomass (FRB) or length across the stand developmental stages. The FRB of the conifers varied with site fertility, whereas in B. pendula it was almost constant. In contrast to the conifers, the specific root length (SRL) of B. pendula clearly increased from the most fertile to the least fertile stand. This indicates differences in the primary nutrient acquisition strategy between conifers and B. pendula.

Keywords

Fine root biomass Fine root length Root morphology Ectomycorrhizal diversity Fungal biomass 

Notes

Acknowledgements

We gratefully acknowledge the help of Pekka Välikangas, Reijo Hautajärvi, Pasi Aatsinki, and Juha Kemppainen in organizing and supervising the pretreatment of the fine root samples in the Salla Office of the Rovaniemi Research Unit of the Finnish Forest Research Institute. We thank Brasilia Decouba, Eva Komanická, Minna Sinkkonen, Mirva Sandberg, Peter Hohti, Roman Tenz, Szilveszter Csorba, Tatiana Kaletova, and the staff of Salla Office for skilful laboratory assistance. We also thank Tarja Lehto for constructive comments on the manuscript. The study was funded by the Academy of Finland (Project 210875).

References

  1. Assman E (1970) The principles of forest yield study: studies in the organic production, structure, increment and yield of forest stands. Pergamon, OxfordGoogle Scholar
  2. Aspelmeier S, Leuschner C (2006) Genotypic variation in drought response of silver birch (Betula pendula Roth): leaf and root morphology and carbon partitioning. Trees 20:42–52CrossRefGoogle Scholar
  3. Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29:260–273CrossRefGoogle Scholar
  4. Bauhus J, Khanna PK, Menden N (2000) Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can J For Res 30:1886–1894CrossRefGoogle Scholar
  5. Bergqvist G (1999) Wood volume yield and stand structure in Norway spruce understorey depending on birch shelterwood density. For Ecol Manage 122:221–229CrossRefGoogle Scholar
  6. Bledsoe CS, Atkinson D (1991) Measuring nutrient uptake by tree roots. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC, Boston, pp 207–224Google Scholar
  7. Bolte A, Villanueva I (2006) Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur J For Res 125:15–26Google Scholar
  8. Brandtberg PO, Lundkvist H, Bengtsson J (2000) Changes in forest-floor chemistry caused by a birch admixture in Norway spruce stands. For Ecol Manage 130:253–264CrossRefGoogle Scholar
  9. Büttner V, Leuschner C (1994) Spatial and temporal patterns of root abundance in a mixed oak-beech forest. For Ecol Manage 70:11–21CrossRefGoogle Scholar
  10. Cajander AK (1949) Forest types and their significance. Acta For Fenn 56:1–69Google Scholar
  11. Chen W, Zhang Q, Cihlar J, Bauhaus J, Price DT (2004) Estimating fine-root biomass and production of boreal and cool temperate forests using aboveground measurements: a new approach. Plant Soil 265:31–46CrossRefGoogle Scholar
  12. Curt T, Prévosto B (2003) Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255:265–279CrossRefGoogle Scholar
  13. Eissenstat DM (1992) Cost and benefits of constructing roots of small diameter. J Plant Nutr 1:763–782CrossRefGoogle Scholar
  14. Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42CrossRefGoogle Scholar
  15. Fiedler HJ, Hunger W, Zant R (1963) Untersuchungen über die Bodendurchwurzelung der Fichte. Archiv Forstwes 12:1214–1223Google Scholar
  16. Finér L, Messier C, De Grandpré L (1997) Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–314Google Scholar
  17. Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Borja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen M-R, Ohashi M, Oleksyn J, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405Google Scholar
  18. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  19. Godbold D, Fritz H-W, Jentschke G, Meesenburg H, Rademacher P (2003) Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiol 23:915–921PubMedGoogle Scholar
  20. Grime JP (2002) Plant strategies, vegetation processes and ecosystem properties. Wiley, ChichesterGoogle Scholar
  21. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, OxfordGoogle Scholar
  22. Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in apatite amended and non-amended mesh bags buried in a phosphorus-poor spruce forest. Mycol Res 112:681–688CrossRefPubMedGoogle Scholar
  23. Helmisaari H-S, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below- and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For Ecol Manage 165:317–326CrossRefGoogle Scholar
  24. Helmisaari H-S, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504PubMedGoogle Scholar
  25. Hendricks CMA, Bianchi FJJA (1995) Root density and biomass in pure and mixed forest stands of Douglas-fir and Beech. Netherl J Agric Sci 43:321–331Google Scholar
  26. Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186CrossRefPubMedGoogle Scholar
  27. Hobbie EA, Wallander H (2006) Integrating actomycorrhizal fungi into quantitative frameworks of forest carbon and nitrogen cycling. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge Univ. Press, pp 98–128Google Scholar
  28. Jose S, Williams R, Zamora D (2006) Belowground ecological interactions in mixed-species forest plantations. For Ecol Manage 233:231–239CrossRefGoogle Scholar
  29. Kalela EK (1937) Tutkimuksia kuusi-harmaaleppä-sekametsiköiden kehityksestä. Acta For Fenn 44:1–179Google Scholar
  30. Kalliokoski T, Nygren P, Sievänen R (2008) Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn 42(2):189–210Google Scholar
  31. Kelty MJ (2006) The role of species mixtures in plantation forestry. For Ecol Manage 233:195–204CrossRefGoogle Scholar
  32. Keyes MR, Grier CC (1981) Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605CrossRefGoogle Scholar
  33. Koide RT, Shumway DL, Xu B, Sharda JN (2007) On temporal partitioning of a community of ectomycorrhizal fungi. 174: 420–429Google Scholar
  34. Kõljalg U, Larsson K-L, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068CrossRefPubMedGoogle Scholar
  35. Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824CrossRefPubMedGoogle Scholar
  36. Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807CrossRefPubMedGoogle Scholar
  37. Lyford WH (1980) Development of the root system of northern red oak (Quercus rubra L.). Harv For Pap 21Google Scholar
  38. Majdi H, Persson H (1995) A study on fine-root dynamics in reponse to nutrient applications in a Norway spruce stand using the minirhizotron technique. Z Pflanzenernaehr Bodenkd 158:429–433CrossRefGoogle Scholar
  39. Majdi H, Viebke C-G (2004) Effects of fertilization with Dolomite Lime + PK or wood ash on root distribution and morphology in a Norway spruce stand in Southwest Sweden. For Sci 50:802–809Google Scholar
  40. Majdi H, Truus L, Johansson U, Nylund J-E, Wallander H (2008) Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. For Ecol Manage 255:2109–2117CrossRefGoogle Scholar
  41. Makkonen K, Helmisaari H-S (1998) Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. For Ecol Manage 102:283–290CrossRefGoogle Scholar
  42. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 5. MjM Software Design, Gleneden BeachGoogle Scholar
  43. Meinen C (2008) Fine root dynamics in broad-leaved deciduous forest stands differing in tree species diversity. Dissertation, University of GöttingenGoogle Scholar
  44. Meyer FH (1967) Feinwurzelverteilung bei Waldbäumen in Abhängigkeit vom Substrat. Forstarchiv 38:286–290Google Scholar
  45. Mustajärvi K, Merilä P, Derome J, Lindroos A-J, Helmisaari H-S, Nöjd P, Ukonmaanaho L (2008) Fluxes of dissolved organic and inorganic nitrogen in relation to stand characters and latitude in Scots pine and Norway spruce stands in Finland. Boreal Environ Res 13(Suppl. B):3–21Google Scholar
  46. Nilsson LO, Giesler R, Bååth E, Wallander H (2005) Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622CrossRefPubMedGoogle Scholar
  47. Näsholm T, Persson J (2001) Plant acquisition of organic nitrogen in boreal forests. Physiol Plant 111:419–426CrossRefPubMedGoogle Scholar
  48. Oliver CD, Larson BC (1996) Forest stand dynamics. Update edition. Wiley, New YorkGoogle Scholar
  49. Ostonen I, Lõhmus K, Helmisaari H-S, Truu J, Meel S (2007a) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27:1627–1634Google Scholar
  50. Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007b) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442Google Scholar
  51. Palatova E, Mauer O (2001) Mutual relations of mountain ash, beech and spruce root systems in the mixed mountain forest. Ekol-Bratisl 20(Suppl. 1):79–91Google Scholar
  52. Pennanen T, Liski J, Bååth E, Kitunen V, Uotila J, Westman CJ, Fritze H (1999) Structure of microbial communities in coniferous soils in relation to site fertility and stand development stage. Microb Ecol 38:168–179CrossRefPubMedGoogle Scholar
  53. Pennanen T, Caul S, Daniell TJ, Griffiths BS, Ritz K, Wheatley RE (2004) Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs. Soil Biol and Biochem 36:841–848CrossRefGoogle Scholar
  54. Persson HA (1983) The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101CrossRefGoogle Scholar
  55. Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309CrossRefGoogle Scholar
  56. Potila H, Wallander H, Sarjala T (2009) Growth of ectomycorrhizal fungi in drained peatland forests with variable P and K availability. Plant Soil 316:139–150CrossRefGoogle Scholar
  57. Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C (1998) Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct Ecol 12:327–338CrossRefGoogle Scholar
  58. Repola J, Ojansuu R, Kukkola M (2007) Biomass functions for Scots pine, Norway spruce and birch in Finland. Working papers of the Finnish Forest Research Institute 53. p 28.Google Scholar
  59. Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870CrossRefGoogle Scholar
  60. Rust S, Savill PS (2000) The root system of Fraxinus excelsior and Fagus sylvatica and their competitive relationships. Forestry 5:499–508CrossRefGoogle Scholar
  61. Sandhage-Hoffmann A, Zech W (1993) Dynamik und Element-gehalte von Fichten-wurzeln in Kalkgesteinböden am Wank (Bayerishe Kalkalpen). Z. Pflanzenernäehr Bodenk 156:181–190CrossRefGoogle Scholar
  62. Schmid I (2002) The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl Ecol 3:339–346CrossRefGoogle Scholar
  63. Schmid I, Kazda M (2001) Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manag 159:37–47CrossRefGoogle Scholar
  64. Tamminen P (1991) Kangasmaan ravinnetunnusten ilmaiseminen ja viljavuuden alueellinen vaihtelu Etelä-Suomessa. Summary: Expression of soil nutrient status and regional variation in soil fertility of forested sites in southern Finland. Folia For 777. p 40Google Scholar
  65. Toljander JF, Eberhardt U, Toljander YK, Leslie RP, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in boreal forest. New Phytol 170:873–884CrossRefPubMedGoogle Scholar
  66. Vainio J, Korhonen K, Hantula J (1998) Genetic variation in Phlebia gigantea as detected with random amplified microsatellite (RAMS) markers. Mycol Res 102:187–192CrossRefGoogle Scholar
  67. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, CambridgeGoogle Scholar
  68. Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and site fertility in southern Finland. Tree Physiol 12:823–830Google Scholar
  69. Vanninen P, Ylitalo H, Sievänen R, Mäkelä A (1996) Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10:231–238Google Scholar
  70. Vogt KA, Grier CC, Meier CE, Keyes MR (1983) Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in Western Washington, as suggested by fine-root input. Ecol Monogr 53:139–157CrossRefGoogle Scholar
  71. Wallander H (2006) External mycorrhizal mycelia—the importance of quantification in natural ecosystems. New Phytol 171:240–242CrossRefPubMedGoogle Scholar
  72. Wallander H, Thelin G (2008) The stimulating effect of apatite on ectomycorrhizal growth diminishes after PK fertilization. Soil Biol Biochem 40:2517–2522CrossRefGoogle Scholar
  73. Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760CrossRefGoogle Scholar
  74. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfaud DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  75. Yin X, Perry JA, Dixon RK (1989) Fine-root dynamics and biomass distribution in a Quercus ecosystem following harvesting. For Ecol Manage 27:159–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tuomo Kalliokoski
    • 1
    • 2
  • Taina Pennanen
    • 1
  • Pekka Nygren
    • 2
  • Risto Sievänen
    • 1
  • Heljä-Sisko Helmisaari
    • 1
  1. 1.Finnish Forest Research InstituteVantaaFinland
  2. 2.Department of Forest EcologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations