Plant and Soil

, Volume 329, Issue 1–2, pp 421–431 | Cite as

Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities

  • Tania Taurian
  • María Soledad Anzuay
  • Jorge Guillermo Angelini
  • María Laura Tonelli
  • Liliana Ludueña
  • Dayana Pena
  • Fernando Ibáñez
  • Adriana Fabra
Regular Article


In the present study, attempts were made to identify the potential of bacterial strains for promoting Arachis hypogaea L. growth. Four hundred and thirty three bacteria were isolated from rhizosphere, phyllosphere and plant tissues from peanuts cultivated in the producing area of Cordoba, Argentina. From this collection, 37 epiphytic isolates and 73 endophytic isolates were selected on the basis of tricalcium phosphate solubilizing activity. These isolates were further tested for other plant growth-promoting attributes and some of them evaluated to examine the effect of inoculation on peanut growth. Siderophore production was observed in a high percentage of the isolates, especially in the root nodule endophytes. Antibiosis was evaluated against the phytopathogen fungus Sclerotinia minor and S. Sclerotiorum. Endophytes from nodules showed the highest levels of fungal growth inhibition. A low number of isolates was able to produce auxin like molecules and inoculation of peanut seedlings with these bacteria showed variability on seed germination enhancement. Isolate J49, identified to belong to genus Pantoea, was the most promising bacterium because it increases peanut plant biomass in inoculation experiments. Peanut soils in the province of Cordoba harbor bacteria with major plant growth promotion properties which represent a potential source of new strains that could be used as biological inoculants in agriculture.


Peanut Native isolates Plant growth promotion Phosphate solubilizing bacteria 



This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECYT-UNRC), CONICET and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) M.L. T. And M. S. Anzuay have doctoral fellowships from CONICET, F.I. has a posdoctoral fellowship from CONICET, A.F., J.A. and T.T. are members of research career of CONICET, Argentina.

Fungi used in this work were gently provided by Dra. Marinelli (UNRC).


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Millar W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Andrews J, Harris R (2000) The ecology and biogeography of microorganisms on plant surface. Ann Rev Phytopathol 38:145–180CrossRefGoogle Scholar
  3. Antoun H, Beuchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as growth promoting bacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67CrossRefGoogle Scholar
  4. Arora D, Gaur C (1979) Microbial solubilization of different inorganic phosphates. Indian J Exp Biol 17:1258–1261Google Scholar
  5. Bashan Y, de-Bashan LE (2005) Bacteria/Plant growth-promotion. En: Hillel D(ed) Encyclopedia of soils in the environment, Vol 1. Elsevier, Oxford, UK, pp 103–115Google Scholar
  6. Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant-growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228CrossRefGoogle Scholar
  7. Bonadeo E, Moreno I (2006) In: Peanut crop in Córdoba: Mineral nutrition 113–123. Eds. E. M. Fernandez, O. Giayetto, Ed. Universidad Nacional de Río Cuarto.Google Scholar
  8. Bonadeo E, Moreno I, Pedelini R (1997) 12° Jornada Nacional del Maní. Gral Carbrera-Córdoba, p 29–31Google Scholar
  9. Bonadeo E, Moreno I, Pedelini R (1998) III Reunión Nacional de Oleaginosos. Bahía Blanca, Argentina, p 225Google Scholar
  10. Bosch EN, Da Veiga A (2002) Pérdida de productividad de un suelo agrícola. INTA, Buenos AiresGoogle Scholar
  11. Bric JM, Bostock RM, Silverstone SE (1991) Rapid in vitro assay for indoleacetic acid production by bacteria inmobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538PubMedGoogle Scholar
  12. Busso G, Civitaresi M, Geymonat A, Roig R (2004) Situación socioeconómica de la producción de maní y derivados en la región centro-sur de Córdoba. Diagnósticos y propuestas de políticas para el fortalecimiento de la cadena. Universidad Nacional de Río Cuarto. Río Cuarto, Argentina. 163pp. Eds: Universidad Nacional de Río CuartoGoogle Scholar
  13. Chabot R, Beuchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminiscent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618CrossRefGoogle Scholar
  14. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing habilitéis. Appl Soil Ecology 34:33–41CrossRefGoogle Scholar
  15. Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974CrossRefGoogle Scholar
  16. Das AC, Mukherjee D (2000) Influence of insecticides on microbial transformation of nitrogen and phosphorus in typic orchragualf soil. J Agric Food Chem 48(8):3728–3732CrossRefPubMedGoogle Scholar
  17. De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but no phosphorus uptake of canola (Brassica napus L.). Biol Fertl Soils 24:358–364CrossRefGoogle Scholar
  18. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) plant growth-promting rhizobacteria. Microbiol Res 159:371–394CrossRefPubMedGoogle Scholar
  19. Dudley M, Jacob T, Long SR (1987) Microcospic studies of cell division induced in alfalfa roots by Rhizobium meliloti. Planta 171:289–301CrossRefGoogle Scholar
  20. Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia (Bratils) 62:251–257. doi: 10.2478/s11756-007-0044-1 CrossRefGoogle Scholar
  21. Frioni L (1999) Procesos microbianos. Editorial de la Fundación de la UNRC (II), p 273Google Scholar
  22. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117 Fijarme si ya no esta en texto sacarloCrossRefGoogle Scholar
  23. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowsky reagent for indolic compounds produced by phyropathogenic bacteria. Appl Environ Microbiol 61:793–796PubMedGoogle Scholar
  24. Gordon SA, Weber RP (1951) Colorimetric estimation of indolacetic acid. Plant Physiol 26:192–195CrossRefPubMedGoogle Scholar
  25. Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303PubMedGoogle Scholar
  26. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704CrossRefPubMedGoogle Scholar
  27. Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92CrossRefGoogle Scholar
  28. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  29. Hamdali H, Hafidi M, Virolle MJ, Ouchdouch Y (2008) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575CrossRefGoogle Scholar
  30. Hoagland DR, Arnon DI (1950) Water culture method for growing plants without soil. California Agricultural experiment Station Circular 347Google Scholar
  31. Ibañez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst and Appl Microbiol 32:49–55CrossRefGoogle Scholar
  32. Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568CrossRefGoogle Scholar
  33. Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395CrossRefGoogle Scholar
  34. Jayaswal R, Fernández M, Schroeder R (1990) Isolation and characterization of Pseudomonas strain that restricts growth of various phytopatogenic fungi. Appl Environ Microbiol 56:1053–1058PubMedGoogle Scholar
  35. Kamesky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain ICI4 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrys cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331CrossRefGoogle Scholar
  36. Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon source. Soil Biol Biochem 30:995–1003CrossRefGoogle Scholar
  37. Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Laliberte M, Frawley K, Kutchaw T, Simonson C, Lifshitz R, Zalesua I, Lee L (1988) Plant growth promoting bacteria on canola (rape seed). Plant Dis 72:42–46CrossRefGoogle Scholar
  38. Kuklinsky-Sobral J, Araújo W, Mendes R, Geraldi I, Pizzirani-Kleiner A, Azevedo J (2004) Isolation and characterization of soybean associated bacteri and their potential for plant growth promotion. Environ Microbiol 6:1244–1251CrossRefPubMedGoogle Scholar
  39. Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246CrossRefGoogle Scholar
  40. Lucy M, Ree E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Review article published in Antonie van Leeuweenhoek 86:1–25, 2004 © 2004 Kluwer Academic Publishers, Printed in the NetherlandsGoogle Scholar
  41. Machuca A, Napoleao D, Milagres AMF (2001) Detection of metal chelating compounds from wood-rotting fungi Trametes versicolor and Wolfiporia cocos. World J Microbiol Biotechnol 17:687–690CrossRefGoogle Scholar
  42. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  43. Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572CrossRefGoogle Scholar
  44. Nautiyal CS (1999) An efficient microbiological medium growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefPubMedGoogle Scholar
  45. Podile AR, Kishore GK (2006) In: Plant-Associated Bacteria: Plant growth-promoting rhizobacteria, Part 2: 195–230Google Scholar
  46. Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56CrossRefGoogle Scholar
  47. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339 Fijarme si ya no esta en texto sacarloCrossRefGoogle Scholar
  48. Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potencial applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. doi: 10.1007/s11104-006-9056-9 © Springer 2006Google Scholar
  49. Schwyn B, Neilands J (1987) Universal chemical assay for detection and determination of siderophores. Analitical Biochem 160:47–56CrossRefGoogle Scholar
  50. Severina I (2006) Informe análisis de muestras de suelo manisero, Gral Cabrera, Proyecto Agricultura sustentableGoogle Scholar
  51. Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technol 97:204–210CrossRefGoogle Scholar
  52. Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New YorkGoogle Scholar
  53. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  54. Taurian T, Aguilar OM, Fabra A (2002) Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdoba, Argentina. Symbiosis 33:59–72Google Scholar
  55. Taurian T, Ibañez F, Fabra A, Aguilar OM (2006) Genetic diversity of rhizobia nodulating Arachis hypogaea L. in Central Argentinian Soils. Plant Soil 282:41–52CrossRefGoogle Scholar
  56. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potential and future trends. Appl Microbiol Biotechnol 71:137–144CrossRefPubMedGoogle Scholar
  57. Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468CrossRefGoogle Scholar
  58. Vincent JM (1970) A manual for the practical study of root nodule bacteria. IBP Handbook N°15. Blackwell, OxfordGoogle Scholar
  59. Whitelaw MA (2000) Growth promotion of plant inoculated with phosphate solubilizing fungi. Adv Agron 69:99–238CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tania Taurian
    • 1
  • María Soledad Anzuay
    • 1
  • Jorge Guillermo Angelini
    • 1
  • María Laura Tonelli
    • 1
  • Liliana Ludueña
    • 1
  • Dayana Pena
    • 1
  • Fernando Ibáñez
    • 1
  • Adriana Fabra
    • 1
  1. 1.Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-quimicas y NaturalesUniversidad Nacional de Río CuartoCórdobaArgentina

Personalised recommendations