Advertisement

Plant and Soil

, Volume 328, Issue 1–2, pp 483–493 | Cite as

Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots

  • Marta S. Dardanelli
  • Hamid Manyani
  • Sergio González-Barroso
  • Miguel A. Rodríguez-Carvajal
  • Antonio M. Gil-Serrano
  • Maria R. Espuny
  • Francisco Javier López-Baena
  • Ramon A. Bellogín
  • Manuel Megías
  • Francisco J. OlleroEmail author
Regular Article

Abstract

In this work we studied how biotic and abiotic stresses can alter the pattern of flavonoids exuded by Osumi soybean roots. A routine method was developed for the detection and characterization of the flavonoids present in soybean root exudates using HPLC-MS/MS. Then, a systematic screening of the flavonoids exuded under biotic stress, the presence of a plant growth promoting rhizobacterium, and salt stress was carried out. Results obtained indicate that the presence of Chryseobacterium balustinum Aur9 or 50 mM NaCl changes qualitatively the pattern of flavonoids exuded when compared to control conditions. Thus, in the presence of C. balustinum Aur9, soybean roots did not exude quercetin and naringenin and, under salt stress, flavonoids daidzein and naringenin could not be detected. Soybean root exudates obtained under saline conditions showed a diminished capacity to induce the expression of the nodA gene in comparison to the exudates obtained in the absence of salt. Moreover, lipochitooligosaccharides (LCOs) were not detected or weakly detected when Sinorhizobium fredii SMH12 was grown in the exudates obtained under salt stress conditions or under salt stress in the presence of C. balustinum Au9, respectively.

Keywords

Plant groth promoting rhizobacteria (PGPR) Soybean Flavonoids Exudation Saline stress Nod gene expression 

Notes

Acknowledgments

This work was partially supported by grants AGL2005-07923-C05 and AGL2006-13758-C05/AGR of the Spanish Ministerio de Ciencia e Innovación. M. S. Dardanelli is a member of the Research Career of CONICET, Argentina.

References

  1. Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity and biosynthesis. J Plant Res 113:475–488CrossRefGoogle Scholar
  2. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  3. Bekki A, Trinchant JC, Rigaud J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71:61–67CrossRefGoogle Scholar
  4. Buendía-Clavería AM, Moussaid A, Ollero FJ, Vinardell JM, Torres A, Moreno J, Gil-Serrano AM, Rodríguez-Carvajal MA, Tejero-Mateo P, Peart JL, Brewin NJ, Ruiz-Sainz JE (2003) A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology 149:1807–1818CrossRefPubMedGoogle Scholar
  5. Cho MJ, Harper JE (1991) Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots. Plant Physiol 95:435–442CrossRefPubMedGoogle Scholar
  6. Crespo-Rivas JC, Margaret I, Pérez-Montaño F, López-Baena FJ, Vinardell JM, Ollero FJ, Moreno J, Ruiz-Sainz JE, Buendía-Clavería AM (2007) A pyrF auxotrophic mutant of Sinorhizobium fredii HH103 impaired in its symbiotic interactions with soybean and other legumes. Int Microbiol 10:169–176PubMedGoogle Scholar
  7. D’Arcy-Lameta A (1986) Study of soybean and lentil root exudates. Identification of some polyphenolic compounds, relation with plantlet physiology. Plant Soil 92:113–123CrossRefGoogle Scholar
  8. Dakora F, Phillips D (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47CrossRefGoogle Scholar
  9. Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez-Carvajal MA, Soría-Díaz ME, Gil-Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  10. de Maagd RA, Wijffelman CA, Pees E, Lugtenberg JBB (1988) Detection and localization of two Sym plasmid-dependent proteins of Rhizobium leguminosarum biovar viciae. J Bacteriol 170:4424–4427PubMedGoogle Scholar
  11. Delgado MJ, Ligero F, Lluch C (1994) Effect of salt stress on growth and nitrogen fixation by pea, faba bean, common an and soybean plants. Soil Biol Biochem 26:71–376CrossRefGoogle Scholar
  12. Estévez J, Dardanelli MS, Megias M, Rodríguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis (in press).Google Scholar
  13. Gutiérrez-Mañero FJ, Probanza A, Ramos B, Colón-Flores JJ, Lucas-García JA (2003) Effects of culture filtrates of rhizobacteria isolated from wild lupine on germination, growth, and biological nitrogen fixation of lupine seedlings. J Plant Nutr 26:1101–1115CrossRefGoogle Scholar
  14. Kape R, Parniske M, Brandt S, Werener D (1992) Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudates. Appl Environ Microbiol 58:1705–1710PubMedGoogle Scholar
  15. Lohar DP, Sharopova N, Endre G, Peñuela S, Samac D, Town C, Silverstein KAT, VanderBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234CrossRefPubMedGoogle Scholar
  16. López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, Espuny MR, Ollero FJ (2008) Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 154:1835–1836CrossRefGoogle Scholar
  17. Lucas-García JA, Probanza A, Ramos B, Barriuso J, Gutiérrez-Mañero FJ (2004) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267:143–153CrossRefGoogle Scholar
  18. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44CrossRefGoogle Scholar
  19. Pueppke SG, Bolaños-Vasquez MC, Werner D, Bec-Ferté MP, Promé JC, Krishnan HB (1998) Release of flavonoids by the soybean cultivars McCall and Peking and their perception as signals by the nitrogen-fixing symbiont Sinorhizobium fredii. Plant Physiol 117:599–608CrossRefPubMedGoogle Scholar
  20. Ramos-Solano B, Barriuso J, Pereyra MT, Domeneche J, Gutiérrez-Mañero FJ (2007) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathol 98:451–457CrossRefGoogle Scholar
  21. Rao JR, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413PubMedGoogle Scholar
  22. Rao JR, Cooper JE (1995) Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol Plant Microbe Interact 8:855–862Google Scholar
  23. Rauha JP, Vuorela H, Kostiainen R (2001) Effect of eluent on the ionization efficiency of flavonoids by ion spray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization mass spectrometry. J Mass Spectrom 36:1269–1280CrossRefPubMedGoogle Scholar
  24. Ríos JJ, Gil MJ, Gutiérrez-Rosales F (2005) Solid-phase extraction gas chromatography-ion trap-mass spectrometry qualitative method for evaluation of phenolic compounds in virgin olive oil and structural confirmation of oleuropein and ligstroside aglycons and their oxidation products. J Chromatogr 1093:167–176CrossRefGoogle Scholar
  25. Rodríguez-Navarro DN, Ruiz-Sainz JE, Buendía-Clavería AM, Santamaría-Linaza C, Balatti PA, Krishnan HB, Pueppke SG (1996) Characterization of fast-growing rhizobia from nodulated soybean (Glycine max (L.) Merr.) in Vietnam. Syst Appl Microbiol 19:240–248Google Scholar
  26. Rodríguez-Navarro DN, Bellogín R, Camacho M, Daza A, Medina C, Ollero FJ, Santamaría C, Ruíz-Saínz JE, Vinardell JM, Temprano FJ (2002) Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. Eur J Agron 19:299–309CrossRefGoogle Scholar
  27. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880CrossRefPubMedGoogle Scholar
  28. Smit G, Puvanesarajahy V, Carlson RWE, Barbour WM, Stacey G (1992) Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J Biol Chem 267:310–318PubMedGoogle Scholar
  29. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant. FEMS Microbiol Rev 31:425–448CrossRefPubMedGoogle Scholar
  30. Spaink HP, Aarts A, Stacey G, Bloemberg GV, Lugtenberg BJJ, Kennedy EP (1992) Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant Microbe Interact 5:72–80PubMedGoogle Scholar
  31. Strack D, Wray V (1994) The anthocyanins. In: Harborne JB (ed) The flavonoids. Chapman & Hall, London, pp 1–22Google Scholar
  32. Tejera NA, Campos R, Sanjuán J, Lluch C (2004) Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J Plant Physiol 161:329–338CrossRefPubMedGoogle Scholar
  33. Tejera NA, Campos R, Sanjuán J, Lluch C (2005) Effect of inoculation with Rhizobium tropici isogenic strains on growth, nutrient accumulation and nitrogen fixation of common bean plants. J Plant Nutr 28:1907–1921CrossRefGoogle Scholar
  34. Tu JC (1981) Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239CrossRefGoogle Scholar
  35. Vinardell JM, López-Baena FJ, Hidalgo A, Ollero FJ, Bellogín RA, Espuny MR, Temprano F, Romero F, Krishnan HB, Pueppke SG, Ruiz-Sainz JE (2004) The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner. Arch Microbiol 181:144–154CrossRefPubMedGoogle Scholar
  36. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63:968–989PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marta S. Dardanelli
    • 1
    • 4
  • Hamid Manyani
    • 1
  • Sergio González-Barroso
    • 2
  • Miguel A. Rodríguez-Carvajal
    • 2
  • Antonio M. Gil-Serrano
    • 2
  • Maria R. Espuny
    • 3
  • Francisco Javier López-Baena
    • 3
  • Ramon A. Bellogín
    • 3
  • Manuel Megías
    • 1
  • Francisco J. Ollero
    • 3
    Email author
  1. 1.Departamento de Microbiología y Parasitología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Química Orgánica, Facultad de QuímicaUniversidad de SevillaSevillaSpain
  3. 3.Departamento de Microbiología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
  4. 4.Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y NaturalesUniversidad Nacional de Río CuartoCórdobaArgentina

Personalised recommendations