Plant and Soil

, Volume 328, Issue 1–2, pp 235–244 | Cite as

Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke

  • François K. Chipeng
  • Christian Hermans
  • Giles Colinet
  • Michel-Pierre Faucon
  • Michel Ngongo
  • Pierre Meerts
  • Nathalie VerbruggenEmail author
Regular Article


Cu tolerance and accumulation have been studied in Haumaniastrum katangense, a cuprophyte from Katanga (DR Congo), previously described as a copper hyperaccumulator. Nicotiana plumbaginifolia, a well-known non-tolerant and non-accumulator species, was used as a control. The germination rate of H. katangense was enhanced by copper and fungicide addition, suggesting that fungal pathogens, which restrain germination in normal conditions, are limiting. In hydroponic culture in the Hoagland medium, H. katangense did not grow well, in contrast to N. plumbaginifolia. Better growth was achieved by adding fungicide or higher copper concentrations. The maximal non-effective concentration (NEC) was 12 µM CuSO4 for H. katangense grown in hydroponics, i.e. 24 times greater than Cu concentration in the Hoagland medium. By comparison, copper concentrations greater than 0.5 µM had a negative effect on the growth of N. plumbaginifolia. EC50 (50% effective concentration) in hydroponics was 40 µM CuSO4 for H. katangense and 6 µM CuSO4 for N. plumbaginifolia. EC100 (100% effective concentration) was 100 µM CuSO4 for H. katangense and 15 µM CuSO4 for N. plumbaginifolia. In soil, growth was also stimulated by Cu addition up to 300 mg kg-1 CuSO4. Surplus copper was also required for cultivating H. katangense in sterile conditions, suggesting that Cu excess may be necessary for needs other than pathogen defence. Cu accumulation in the shoot has been measured for N. plumbaginifolia and H. katangense at their respective NEC. Cu allocation in the two species showed a similar response to increasing Cu concentrations, i.e. root/shoot concentration ratio well above 1. In conclusion, H. katangense is highly tolerant to copper and has elevated copper requirement even in the absence of biotic interactions. Its accumulation pattern is typical of an excluder species.


Tolerance Excluders Copper Haumaniastrum katangense Heavy metal Nicotiana plumbaginifolia 



This work is part of a “Projet interuniversitaire ciblé” (Project REMEDLU) funded by the Coopération Universitaire au Développement (Belgium). The authors wish to thank the Fonds National de la Recherche Scientifique for financial support (FNRS, FRFC 2.4558.08). C.H. and M.P.F. are respectively postdoctoral and PhD fellows of the FNRS. The authors wish to thank Dr Karin Kohl (MPI, Golm) for interesting discussion on cuprophytes.


  1. Andrés-Colás N, Sanceno V, Rodrıguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236CrossRefPubMedGoogle Scholar
  2. Baize D, Tercé M (2002) Les éléments traces métalliques dans les sols: approches fonctionnelles et spatiales, INRA editions, ParisGoogle Scholar
  3. Baker AJM (1981) Accumulators and excluders – strategies in the response of plant to heavy metal. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  4. Baker AJ, Brooks RR, Pease AJ, Malaisse F (1983) Studies on copper and cobalt tolerance in the three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaïre. Plant Soil 73:377–385. doi: 10.1007/BF02184314 CrossRefGoogle Scholar
  5. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  6. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Bañuelos G, Terry N (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, pp 85–108Google Scholar
  7. Brooks RR, Reeves RD, Morrison RS, Malaisse F (1980) Hyperaccumulation of copper and cobalt – a review. Bull Soc Roy Bot Belg 113:166–172Google Scholar
  8. Brooks RR, Gregorie J, Madi L, Malaisse F (1982) Phytogéochimie des gisements cupro-cobaltifères de l’anticlinal de Kasonta (Shaba-Zaïre). Geo-Eco-Trop 6:219–228Google Scholar
  9. Brooks RR, Malaisse F (1985) The heavy metal-tolerant Flora of Southcentral Africa – a multidisciplinary approach. Balkema, Rotterdam, p 199Google Scholar
  10. Duvigneaud P, Denaeyer-De Smet S (1963) Cuivre et végétation au Katanga. Bull Soc Roy Bot Belg 96:92–231Google Scholar
  11. Faucon MP, Shutcha M, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36. doi: 10.1007/s11104-9405-3 CrossRefGoogle Scholar
  12. Faucon MP, Colinet G, Mahy G, Luhembwe NM, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212. doi: 10.1007/s11104-008-9801-3 CrossRefGoogle Scholar
  13. Harper FA, Smith SE, Macnair MR (1997) Can an increased copper requirement in copper-tolerant Mimulus guttatus explain the cost of tolerance? I. Vegetative growth. New Phytol 136:455–467CrossRefGoogle Scholar
  14. Harper FA, Smith SE, Macnair MR (1998) Can an increased copper requirement in copper-tolerant Mimulus guttatus explain the cost of tolerance? II. Reproductive phase. New Phytol 140:637–654CrossRefGoogle Scholar
  15. Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161. doi: 10.1093/jxb/eric215 CrossRefPubMedGoogle Scholar
  16. Jiang LY, Yang XE, Chen JM (2008) Copper tolerance and accumulation of Elsholtzia splendens Nakai in a pot environment. J Plant Nutr 31:1382–1392CrossRefGoogle Scholar
  17. Kobayashi Y, Kuroda K, Kimura K, Southron-Francis JL, Furuzawa A, Kimura K, Iuchi S, Kobayashi M, Taylor GJ, Koyama H (2008) Amino acid polymorphisms in strictly conserved domains of a P-Type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiol 148:969–980. doi: 10.1104/pp.108.119933 CrossRefPubMedGoogle Scholar
  18. Leteinturier B, Malaisse F (2000) The copper flora of Katanga: a phytogeochimical analysis. Geo-Eco-Trop. 23:31–48Google Scholar
  19. Lou LQ, Shen ZG, Li XD (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120. doi: 10.1016/j.envexpbot.2003.08.002 CrossRefGoogle Scholar
  20. Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105CrossRefGoogle Scholar
  21. Malaisse F, Grégoire J, Morrison RS, Brooks RR, Reeves RD (1979) Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaïre. Oikos 33:472–478CrossRefGoogle Scholar
  22. Malaisse F, Brooks RR (1982) Colonisation of modified metalliferous environments in Zaire by the copper flower Haumaniastrum katangense. Plant Soil 64:289–293CrossRefGoogle Scholar
  23. Malaisse F, Brooks RR, Baker AJM (1994) Diversity of vegetation communities in relation to soil heavy metal content at the Shinkolobwe copper/cobalt/uranium mineralization, Upper Shaba, Zaïre. Bull Soc Roy Bot Belg 127:3–16Google Scholar
  24. Malaisse F, Baker AJM, Ruelle S (1999) Diversity of plant communities and leaf heavy content at Luiswishi copper/cobalt mineralization, Katanga. Dem. Rep. Congo. Biotechnol Agron Soc Environ 3:104–114Google Scholar
  25. Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 53:535–539CrossRefGoogle Scholar
  26. Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, Merriam GR (1981) The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba province, Zaïre. Phytochemistry 20:455–458. doi: 10.1016/S0031-9422(00)84165-5 CrossRefGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:437–497CrossRefGoogle Scholar
  28. Paton A, Brooks RR (1996) A re-evaluation of Haumaniastrum species as geobotanical indicators of copper and cobalt. J Geochem Expl 56:37–45CrossRefGoogle Scholar
  29. Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Plant Biol 9:256–263Google Scholar
  30. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 193–221Google Scholar
  31. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. NATO Science Series: IV: earth and environmental sciences. Vol 68 pp 1–25. Spinger, New YorkGoogle Scholar
  32. Schat H, Kuiper E, Ten bookum WM, Vooijs R (1993) A general model for the genetic control of copper tolerance in Silene vulgaris: evidence from crosses between plants from different tolerant populations. Heredity 70:142–147CrossRefGoogle Scholar
  33. Shaw AJ (1994) Adaptation to metals in widespread and endemic plants. Environ Health Persect 102(Suppl 12):105–108Google Scholar
  34. Song J, Zhao F, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128:307–315CrossRefPubMedGoogle Scholar
  35. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperacumulation in plants. New Phytol 181:759–776CrossRefGoogle Scholar
  36. Weng G, Wu L, Wang Z, Luo Y, Christie P (2005) Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture. Environ Int 31:880–884. doi: 10.1016/j.envint.2005.05.032 CrossRefPubMedGoogle Scholar
  37. Xia Y, Shen Z (2007) Comparative studies of copper tolerance and uptake by three plant species of the genus Elsholtzia. Bull Environ Contam Toxicol 79:53–57. doi: 10.1007/s00128-007-9222-7 CrossRefPubMedGoogle Scholar
  38. Ye ZH, Baker AJM, Wong MH, Willis AJ (2003) Copper tolerance, uptake and accumulation by Phragmites australis. Chemosphere 50:795–800CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • François K. Chipeng
    • 1
    • 4
  • Christian Hermans
    • 1
  • Giles Colinet
    • 2
  • Michel-Pierre Faucon
    • 3
  • Michel Ngongo
    • 4
  • Pierre Meerts
    • 3
  • Nathalie Verbruggen
    • 1
    Email author
  1. 1.Laboratoire de Physiologie et de Génétique Moléculaire des PlantesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Laboratoire de Géopédologie, Unité Sol-Ecologie-TerritoireFaculté universitaire des Sciences Agronomiques de GemblouxGemblouxBelgium
  3. 3.Laboratoire d’Ecologie Végétale et BiogéochimieUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Faculté des Sciences AgronomiquesUniversité de LubumbashiLubumbashiCongo

Personalised recommendations