Plant and Soil

, Volume 328, Issue 1–2, pp 57–69 | Cite as

Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans

  • Luiz Henrique Saes ZobioleEmail author
  • Rubem Silvério de OliveiraJr
  • Don Morgan Huber
  • Jamil Constantin
  • César de Castro
  • Fábio Alvares de Oliveira
  • Adilson de OliveiraJr.
Regular Article


Although glyphosate-resistant (GR) technology is used in most countries producing soybeans (Glycine max L.), there are no particular fertilize recommendations for use of this technology, and not much has been reported on the influence of glyphosate on GR soybean nutrient status. An evaluation of different cultivar maturity groups on different soil types, revealed a significant decrease in macro and micronutrients in leaf tissues, and in photosynthetic parameters (chlorophyll, photosynthetic rate, transpiration and stomatal conductance) with glyphosate use (single or sequential application). Irrespective of glyphosate applications, concentrations of shoot macro- and micronutrients were found lower in the near-isogenic GR-cultivars compared to their respective non-GR parental lines Shoot and root dry biomass were reduced by glyphosate with all GR cultivars evaluated in both soils. The lower biomass in GR soybeans compared to their isogenic normal lines probably represents additive effects from the decreased photosynthetic parameters as well as lower availability of nutrients in tissues of the glyphosate treated plants.


Glyphosate resistant soybean (Glycine max L.) Glyphosate Nutrient status Photosynthesis 



net photosynthesis


days after sowing


transpiration rate


stomatal conductance


glyphosate-resistant soybean


conventional soybean near-isogenic parental line


(inductively coupled plasma-optical emission spectrometer)



We thank the National Council for Scientific and Technology Development (CNPq), for the graduate scholarship for the senior author and financial support for this research.


  1. Ames BN (1998) Micronutrients prevent cancer and delay aging. Toxicol Lett 102–103:5–18. doi: 10.1016/S0378-4274(98)00269-0 CrossRefPubMedGoogle Scholar
  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. doi: 10.1104/pp. 24.1.1 CrossRefPubMedGoogle Scholar
  3. Arregui MC, Lenardón A, Sanchez D, Maitre MI, Scotta R, Enrique S (2004) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manage Sci 60:163–166. doi: 10.1002/ps.775 CrossRefGoogle Scholar
  4. Baker WH, Thompson TL (1992) Determination of total nitrogen in plant samples by Kjeldahl. In: Plank, C.O. (ed.) Plant Analysis Reference Procedures for the Southern Region of the United States. Southern Cooperative Series Bulletin 368. Athens: The Georgia Agricultural Experiment Station, University of Georgia, pp 13–16Google Scholar
  5. Beale SI (1978) δ-Aminolevulinic acid in plants: its biosynthesis, regulation and role in plastid development. Annu Rev Plant Physiol 29:95–120. doi: 10.1146/annurev.pp. 29.060178.000523 CrossRefGoogle Scholar
  6. Bellaloui N, Reddy KN, Zablotowicz RM, Mengistu A (2006) Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean. J Agric Food Chem 54:3357–3364CrossRefPubMedGoogle Scholar
  7. Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154:127–133. doi: 10.1016/0014-5793(83)80888-6 CrossRefPubMedGoogle Scholar
  8. Bott S, Tesfamariam T, Candan H, Cakmak I, Romheld V, Neumann G (2008) Glyphosate-induced impairment of plant growth and micronutrient status in glyphosate-resistant soybean (Glycine max L.). Plant Soil 312:185–194. doi: 10.1007/s11104-008-9760-8 CrossRefGoogle Scholar
  9. Bromilow RH, Chamberlain K, Tench AJ, Williams RH (1993) Phloem translocation of strong acids: Glyphosate, substituted phosphonic, and sulfonic acids in Ricinus communis L. Pestic Sci 37:39–47CrossRefGoogle Scholar
  10. Campbell WF, Evans JO, Reed SC (1976) Effect of glyphosate on chloroplast ultrastructure of quackgrass mesophyll cells. Weed Sci 24:22–25Google Scholar
  11. Coutinho CFB, Mazo LH (2005) Complexos metálicos com o herbicida glyphosate: Revisão. Química Nova 28:1038–1045. doi: 10.1590/S0100-40422005000600019 CrossRefGoogle Scholar
  12. De Maria N, Becerril LM, Garcia-Plazaola JI, Hernandez A, De Felipe MR, Fernandez-Pascual M (2006) New insights on glyphosate mode of action in nodulant metabolism: role of shikimate accumulation. J Agric Food Chem 54:2621–2628CrossRefPubMedGoogle Scholar
  13. Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003) Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 51:340–344. doi: 10.1021/jf025908i CrossRefPubMedGoogle Scholar
  14. Eker S, Ozturk L, Yazici A, Erenoglu B, Romheld V, Cakmak I (2006) Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J Agric Food Chem 54:10019–10025. doi: 10.1021/jf0625196 CrossRefPubMedGoogle Scholar
  15. Embrapa (1997) Manual de métodos de análises do solo, 2nd edn. Centro Nacional de Pesquisa de Solos Embrapa. Rio de Janeiro, RJ, p 212Google Scholar
  16. Fageria NK (1976) Critical P, K, Ca and Mg contents in the tops of rice and peanut plants. Plant Soil 45:421–431. doi: 10.1007/BF00011704 CrossRefGoogle Scholar
  17. Fageria NK (1987) Variação em diferentes estádios de crescimento do nível critico de fósforo em plantas da arroz. R Bras Cie Solo 11:77–80Google Scholar
  18. Fonseca DM, Alvares VH, Neves JCL, Gomide JA, Novais RF, Barros NF (1988) Níveis críticos de fósforo em amostras de solos para o estabelecimento de Andropogon gayanus, Brachiaria decumbens e Hyparrhenia rufa. R Bras Ci Solo 12:49–58Google Scholar
  19. Ferreira DF (1999) Sistema de análise de variância (Sisvar). versão 4.6. Lavras: Universidade Federal de LavrasGoogle Scholar
  20. Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: A Unique Global Herbicide; ACS Monograph 189. American Chemical Society, Washington, DCGoogle Scholar
  21. Franzen DW, O’Barr JH, Zollinger RK (2003) Interaction of a foliar application of iron HEDTA and three postemergence broadleaf herbicides with soybeans stressed from chlorosis. J Plant Nutr 26:2365–2374. doi: 10.1081/PLN-120025465 CrossRefGoogle Scholar
  22. Gazziero DLP, Adegas F, Voll E (2008) Glifosate e soja transgênica. Londrina: Embrapa Soja, Circular Técnica 60, p 4Google Scholar
  23. Glass RL (1984) Metal complex formation by glyphosate. J Agric Food Chem 32:1249–1253. doi: 10.1021/jf00126a010 CrossRefGoogle Scholar
  24. Gordon WB (2007a) Manganese nutrition of glyphosate-resistant and conventional soybeans. Better Crops 91:12–13Google Scholar
  25. Gordon WB (2007b) Does glyphosate gene affect manganese uptake in soybeans? Fluid J. Early Spring 12–13Google Scholar
  26. Hernandez A, Garcia-Plazaola JI, Bacerril JM (1999) Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merril). J Agric Food Chem 47:2920–2925. doi: 10.1021/jf981052z CrossRefPubMedGoogle Scholar
  27. Homann PH (1967) Studies on the manganese of the chloroplast. Plant Physiol 42:997–1007. doi: 10.1104/pp. 42.7.997 CrossRefPubMedGoogle Scholar
  28. Huber DM (2006) Strategies to ameliorate glyphosate immobilization of manganese and its impact on the rhizosphere and disease. In: Lorenz N, Dick R (eds) Proceedings of the Glyphosate Potassium Symposium 2006. Ohio State University, AG Spectrum, DeWittGoogle Scholar
  29. Jaworski EG (1972) Mode of action of N-phosphonomethyl-glycine: inhibition of aromatic amino acid biosynthesis. J Agri Food Chem 20:1195–1198CrossRefGoogle Scholar
  30. Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Euro J Agron (in press)Google Scholar
  31. Kabachnik MI, TYa M, Dyatolva NM, Rudomino MV (1974) Organophosphorus complexones. Russian Chem Rev 43:733–744. doi: 10.1070/RC1974v043n09ABEH001851 CrossRefGoogle Scholar
  32. Kitchen LM, Witt WW, Rieck CE (1981a) Inhibition of chlorophyll accumulation by glyphosate. Weed Sci 29:513–516Google Scholar
  33. Kitchen LM, Witt WW, Rieck CE (1981b) Inhibition of δ-aminolevulinic acid synthesis by glyphosate. Weed Sci 29:571–577Google Scholar
  34. King CA, Purcell LC, Vories ED (2001) Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications. Agron J 93:79–186Google Scholar
  35. Kremer RJ, Means NE, Kim S (2005) Glyphosate affects soybean root exudation and rhizosphere microorganisms. Int J Environ Anal Chem 85:1165–1174. doi: 10.1080/03067310500273146 CrossRefGoogle Scholar
  36. Lee TT (1981) Effects of glyphosate on synthesis and degradation of chlorophyll in soybean and tobacco cells. Weed Res 21:161–164. doi: 10.1111/j.1365-3180.1981.tb00111.x CrossRefGoogle Scholar
  37. Madsen HEL, Christensen HH, Gottlieb-Petersen C (1978) Stability constants of copper (II), zinc, manganese (II), calcium, and magnesium complexes of N-(phosphonomethyl)glycine (glyphosate). Acta Chem Scand 32a:79–83. doi: 10.3891/acta.chem.scand.32a-0079 CrossRefGoogle Scholar
  38. Malavolta E, Vitti GC, Oliveira AS (1997) Princípios, métodos e técnicas de avaliação do estado nutricional. In: Malavolta E, Vitti GC, Oliveira AS (eds) Avaliação do estado nutricional da planta: princípios e aplicações, 2nd edn. POTAFÓS, Piracicaba, pp 115–230Google Scholar
  39. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, United KingdomGoogle Scholar
  40. McCay-Buis TS, Huber DM, Graham RD, Phillips JD, Miskin KE (1995) Manganese seed content and take-all of cereals. J Plant Nutr 18:1711–1721CrossRefGoogle Scholar
  41. Mills HA, Jones JB (1996) Plant Analysis Handbook II: a practical sampling, preparation, analysis, and interpretation guide. MicroMacro Publishing, Inc, AthensGoogle Scholar
  42. Moorman TB, Becerril JM, Lydon J, Duke SO (1992) Production of hydroxybenzoic acids by Bradyrhizobium japonicum strains after treatment with glyphosate. J Agric Food Chem 40:289–293CrossRefGoogle Scholar
  43. Muniz AS, Novais RF, Barros NF, Neves JCL (1985) Nível crítico de fósforo na parte aérea da soja como variável do fator capacidade de fósforo no solo. R Bras Ci Solo 9:237–243Google Scholar
  44. Nilsson G (1985) Interactions between glyphosate and metals essential for plant growth. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworth, London, pp 35–47Google Scholar
  45. Novais RF, Kamprath EJ (1979) Parâmetros de isotermas de adsorção de fósforo como critério de adubação fosfatada. R Bras Ci Solo 3:37–41Google Scholar
  46. Oliveira FA, Sfredo GJ, Castro C, Klepker D (2007) Fertilidade do solo e nutrição da soja. Londrina: Embrapa Soja, Circular Técnica 50, p 8Google Scholar
  47. Ozturk L, Yazici A, Eker S, Gokmen O, Roemheld V, Cakmak I (2008) Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol 17:899–906. doi: 10.1111/j.1469-8137.2007.02340.x CrossRefGoogle Scholar
  48. Pline WA, Wu J, Hatzios KK (1999) Effects of temperature and chemical additives on the response of transgenic herbicide-resistant soybeans to glufosinate and glyphosate applications. Pestic Biochem Physiol 65:119–131. doi: 10.1006/pest.1999.2437 CrossRefGoogle Scholar
  49. Pihakaski S, Pihakaski K (1980) Effects of glyphosate on ultrastructure and photosynthesis of Pellia epiphylla. Annals Bot 46:133–141. doi: 10.1016/j.foreco.2005.11.003 Google Scholar
  50. Pinkard EA, Patel V, Mohammed C (2006) Chlorophyll and nitrogen determination for plantation-grown Eucaliptus nitens and E. glogulus using a non-destructive meter. Forest Ecol Manag 223:211–217CrossRefGoogle Scholar
  51. Reddy KN, Hoagland RE, Zablotowicz RM (2001) Effect of glyphosate on growth, chlorophyll, and nodulation in glyphosate-resistant and susceptible soybean (Glycine max) varieties. J New Seeds 2:37–52. doi: 10.1300/J153v02n03_03 CrossRefGoogle Scholar
  52. Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143. doi: 10.1021/jf049605v CrossRefPubMedGoogle Scholar
  53. Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194. doi: 10.1046/j.0028-646X.2001.00289.x CrossRefGoogle Scholar
  54. Santos JB, Santos EA, Fialho CMT, Silva AA, Freitas MAM (2007) Época de dessecação anterior à semeadura sobre o desenvolvimento da soja resistente ao glyphosate. Planta Daninha 25:869–875Google Scholar
  55. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611Google Scholar
  56. Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: A fundamental component of soil quality. Soil Sci 16:224–234. doi: 10.1097/00010694-199904000-00002 CrossRefGoogle Scholar
  57. Scherer EE (1998) Níveis críticos de potássio para a soja em Latossolo húmico de Santa Catarina. R Bras Ci Solo 22:57–62Google Scholar
  58. Shibles RM, Weber CR (1965) Leaf area, solar radiation interception, and dry matter production by various soybean planting patterns. Crop Sci 6:575–577CrossRefGoogle Scholar
  59. Singh BK, Siehl DL, Connelly JA (1991) Shikimate pathway: why does it mean so much to so many? Oxf Surv Plant Mol Cell Biol 7:143–185Google Scholar
  60. Singh B, Singh Y, Ladha JK, Bronson KF, Balasubramanian V, Singh J, Khind CS (2002) Chlorophyll meter-and leaf color chart-based nitrogen management for rice and wheat in Northwestern India. Agron J 94:821–89CrossRefGoogle Scholar
  61. Sprankle P, Meggitt WF, Penner D (1975) Absorption, action, and translocation of glyphosate. Weed Sci 23:235–240Google Scholar
  62. Taiz L, Zeiger E (1998) Mineral Nutrition. In: Plant Physiology, Sinauer Associates: Sunderland, pp 111–144Google Scholar
  63. Thomson WW, Weier TE (1962) The fine structure of chloroplasts from mineral-deficient leaves of Phaseolus vulgaris. Am J Bot 49:1047–1056. doi: 10.2307/2439150 CrossRefGoogle Scholar
  64. Zablotowicz RM, Reddy KN (2004) Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean. J. Environ. Qual 33:825–831PubMedGoogle Scholar
  65. Zablotowicz RM, Reddy KN (2007) Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean. Crop Protec 26:370–376. doi: 10.1016/j.cropro.2005.05.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Luiz Henrique Saes Zobiole
    • 1
    Email author
  • Rubem Silvério de OliveiraJr
    • 1
  • Don Morgan Huber
    • 2
  • Jamil Constantin
    • 1
  • César de Castro
    • 3
  • Fábio Alvares de Oliveira
    • 3
  • Adilson de OliveiraJr.
    • 3
  1. 1.Center for Advanced Studies in Weed Science (NAPD)State University of Maringá (UEM)MaringáBrazil
  2. 2.Botany & Plant PathologyPurdue UniversityWest LafayetteUSA
  3. 3.Embrapa SoybeanLondrinaBrazil

Personalised recommendations