Plant and Soil

, Volume 327, Issue 1–2, pp 23–34 | Cite as

Effects of NaCl on growth, water status, N2 fixation, and ion distribution in Pterocarpus officinalis seedlings

  • Maguy Dulormne
  • Olivia Musseau
  • Félix Muller
  • Armel Toribio
  • Amadou Bâ
Review Article

Abstract

Pterocarpus officinalis (Fabaceae) dominates in the swamp forests of the Lesser Antilles, submitted to strong variations of soil salinity (30–445 mM). This study aimed to assess the effect of salinity on growth, nodulation, N2 fixation, water status and ions content in P. officinalis and to clarify the mechanisms involved. Seedlings inoculated or not with two strains from areas of contrasting salinity levels (< to 50 or 445 mM) were watered with 0, 171 and 342 mM solutions of NaCl in greenhouse conditions. Non-inoculated seedlings were tolerant to a salinity of 171 mM, with no significant effect on seedling biomass. Evapotranspiration per unit of leaf area (E/TLa) remained unchanged at 171 mM. Maintenance of a constant E/TLa and especially the control of ion transport to the upper parts of the plant could explain seedling salt tolerance up to intermediate salinity conditions (171 mM). The two strains have a 99.8% genetic identity in spite of differences in their original habitats, this explaining the similar response of the symbiosis to salinity. The higher salt sensitivity of inoculated seedlings was linked to the sensitivity of both Bradyrhizobium strains (reduction of free-living cells) and to that of the nodulation process (fewer nodules and inhibition of N2-fixation) to intermediate salinity.

Keywords

Bradyrhizobium Leaf water potential Nodulation Salt Swamp forest 

References

  1. Anthraper A, Dubois JD (2003) The effect of NaCl on growth, N2 fixation (acetylene reduction), and percentage total nitrogen in Leucaena leucocephala (Leguminosae). Am J Bot 90:683–692CrossRefGoogle Scholar
  2. Azevedo Neto AD, Prisco JT, Enéas Filho J, Lacerda CF, Silva JV, Costa PHA, Gomes Filho E (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38CrossRefGoogle Scholar
  3. Bâ AM, Samba R, Sylla SN, Le Roux C, Neyra M, Rousteau A, Imbert D, Toribio A (2004) Characterization of the diversity of symbiotic microorganisms in Pterocarpus officinalis in swamp forests of Guadeloupe and Martinique. Rev Ecol 59:163–170Google Scholar
  4. Bolaños L, Martín M, El-Hamdaoui A, Rivilla R, Bonilla I (2006) Nitrogenase inhibition in nodules from Pea plants grown under salt stress occurs at the physiological level and can be alleviated by B and Ca. Plant Soil 280:135–142CrossRefGoogle Scholar
  5. Bonhême I, Imbert D, Rousteau A, Saur E (1998) La forêt marécageuse à Pterocarpus officinalis. Sa situation en Guadeloupe. Bois Forêt Trop 258:59–68Google Scholar
  6. Cheeseman JM (1988) Mechanisms of Salinity Tolerance. Plant Physiol 87:547–550CrossRefPubMedGoogle Scholar
  7. Cintrón G, Lugo A, Pool D, Morris G (1978) Mangroves of Arid Environments in Puerto Rico and Adjacent Islands. Biotropica 10:110–121CrossRefGoogle Scholar
  8. Conner WH, McLeod KW, McCarron JK (1997) Flooding and salinity effects on growth and survival of four common forested wetland species. Wetl Ecol Manage 5:99–109CrossRefGoogle Scholar
  9. Craig GF, Atkins CA, Bell DT (1991) Effect of salinity on growth of four strains of Rhizobium and their infectivity and effectiveness on two species of Acacia. Plant Soil 133:253–262CrossRefGoogle Scholar
  10. Cramer GR (2003) Differential effects of salinity on leaf elongation kinetics of three grass species. Plant Soil 253:233–244CrossRefGoogle Scholar
  11. De Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120CrossRefGoogle Scholar
  12. Del Pilar Cordovilla M, Ligero F, Lluch C (1999) Effects of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Appl Soil Ecol 11:1–7CrossRefGoogle Scholar
  13. Eusse AM, Aide TM (1999) Patterns of litter production across a salinity gradient in a Pterocarpus officinalis tropical wetland. Plant Ecol 145:307–315CrossRefGoogle Scholar
  14. Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, de Faria SM, Bouvet JM, Nd SS, Dreyfus B, Bâ A (2007) Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza 17:159–66CrossRefPubMedGoogle Scholar
  15. Högberg P, Kvarnström M (1982) Nitrogen fixation by the woody legume Leucaena leucocephala in Tanzania. Plant Soil 66:21–28CrossRefGoogle Scholar
  16. Imbert D, Portecop J (1986) Etude de la production de litière dans la mangrove de Guadeloupe (Antilles Françaises). Oecol Plant 7:379–396Google Scholar
  17. Imbert D, Bonhême I, Saur E, Bouchon C (2000) Floristics and structure of Pterocarpus officinalis swamp forest in Guadeloupe, Lesser Antilles. J Trop Ecol 16:55–68CrossRefGoogle Scholar
  18. Lemaire G (1997) Diagnosis of the nitrogen status in crops. Springler-Verlag, Heidelberg, BerlinGoogle Scholar
  19. Liang S, Zhou R, Dong S, Shi S (2008) Adaptation to salinity in mangroves: Implication on the evolution of salt-tolerance. Chin Sci Bull 53:1708–1715CrossRefGoogle Scholar
  20. López-Hoffman L, Anten N, Martínez-Ramos M, Ackerly D (2007) Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 150:545–556CrossRefPubMedGoogle Scholar
  21. Lugo AE (1990) Introduction. In: Lugo AE, Brinson M, Broxn S (eds) Forest wetland: Ecosystems of the world 15. Elsevier Science Publisher, Amsterdam, pp 1–14Google Scholar
  22. Lugo AE, Medina E, Cuevas E, Cintron G, Laboy Nieves EN, Novelli YS (2007) Ecophysiology of a Mangrove Forest in Jobos Bay, Puerto Rico. Caribb J Sci 43:200–219Google Scholar
  23. Medina E, Cuevas E, Lugo A (2007) Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses. Trees 21:321–327CrossRefGoogle Scholar
  24. Medina E, Francisco M, Quilice A (2008) Isotopic signatures and nutrient relations of plants inhabiting brackish wetlands in the north eastern coastal plain of Venezuela. Wetl Ecol Manage 16:51–64CrossRefGoogle Scholar
  25. Mendes MM, Gazariniet LC, Rodrigues ML (2001) Acclimation of Myrtus communis to contrasting Mediterranean light environments—effects on structure and chemical composition of foliage and plant water. Environ and Exp Bot 45:165–178CrossRefGoogle Scholar
  26. Muller F, Voccia M, Bâ A, Bouvet J-M (2009) Genetic diversity and gene flow in a Caribbean tree Pterocarpus officinalis Jacq.: a study based on chloroplast and nuclear microsatellites. Genetica 135:185–198CrossRefPubMedGoogle Scholar
  27. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefPubMedGoogle Scholar
  28. Munns R (2005) Genes and salt tolerance: bringing them together. New phytologist 167:45–663CrossRefGoogle Scholar
  29. Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtma DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105CrossRefGoogle Scholar
  30. Nicholls RJ, Hoozemans FMJ, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Global Environ Change 9:69–87CrossRefGoogle Scholar
  31. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349CrossRefPubMedGoogle Scholar
  32. Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18:167–174Google Scholar
  33. Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in Chickpea (Cicer arietinum). Ann Bot 89:563–570CrossRefPubMedGoogle Scholar
  34. Ritchie GA, Hinckley TM (1975) The pressure chamber as an instrument for ecological research. Adv Ecol Res 9:165–254CrossRefGoogle Scholar
  35. Rivera-Ocasio E, Aide M, McMillan W (2002) Patterns of genetic diversity and biogeographical history of the tropical wetland tree, Pterocarpus officinalis (Jacq.), in the Caribbean basin. Mol Ecol 11:675–684CrossRefPubMedGoogle Scholar
  36. Rivera-Ocasio E, Aide M, Rios-Lopez N (2007) The effects of salinity on the dynamics of a Pterocarpus forest stand in Puerto Rico. J Trop Ecol 23:559–568CrossRefGoogle Scholar
  37. Saint-Etienne S, Paul S, Imbert D, Dulormne M, Muller F, Toribio A, Plenchette C, Bâ AM (2006) Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. Forest Ecol Manag 232:86–89CrossRefGoogle Scholar
  38. Salter J, Morris K, Bailey P, Boon P (2007) Interactive effects of salinity and water depth on the growth of Melaleuca ericifolia Sm (Swamp paperbark) seedlings. Aquat Bot 86:213–222CrossRefGoogle Scholar
  39. Saur E, Bohême I, Nygren P, Imbert D (1998) Nodulation of Pterocarpus officinalis in the swamp forest of Guadeloupe (Lesser Antilles). J Trop Ecol 14:761–770CrossRefGoogle Scholar
  40. Saur E, Carcelle S, Guezennec S, Rousteau A (2000) Nodulation of legume species in Wetlands of Guadeloupe (Lesser Antilles). Wetlands 20:730–734CrossRefGoogle Scholar
  41. Singleton PW, Bohlool BB (1984) Effect of Salinity on Nodule Formation by Soybean. Plant Physiol 74:72–76CrossRefPubMedGoogle Scholar
  42. Sobrado M (2005) Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity. Photosynthetica 43:217–221CrossRefGoogle Scholar
  43. Suárez N, Medina E (2006) Influence of salinity on Na+ and K+ accumulation, and gas exchange in Avicennia germinans. Photosynthetica 44:268–274CrossRefGoogle Scholar
  44. Sylla SN, Samba RT, Neyra M, Ndoye I, Giraud E, Willems A, deLajudie P, Dreyfus B (2002) Phenotypic and genotypic diversity of rhizobia nodulating Pterocarpus erinaceus and P. lucens in Senegal. Syst Appl Microbiol 25:572–583CrossRefPubMedGoogle Scholar
  45. Teakle NL, Flowers TJ, Real D, Colmer TD (2007) Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl from the xylem. J exp bot 58:2169–2180CrossRefPubMedGoogle Scholar
  46. Vincent JM (1970) A manual for the practical study of root nodule bacteria, vol 15. Blackwell, OxfordGoogle Scholar
  47. Walinga I, Van der Lee JJ, Houba VJG, Van Vark W, Novozamsky I (1995) Plant Analysis Manual. Kluwer Academic, DordrechtGoogle Scholar
  48. Wang Y, Nil N (2000) Changes in chlorophyll, ribulose biphosphate carboxylase oxygenase, glycine betaïne content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Horticult Sci Biotechnol 75:623–627Google Scholar
  49. Willems A, Munive A, de Lajudie P, Gillis M (2003) In most bradyrhizobium groups sequence comparison of 16S–23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 26:203–210CrossRefPubMedGoogle Scholar
  50. Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maguy Dulormne
    • 1
  • Olivia Musseau
    • 1
  • Félix Muller
    • 2
  • Armel Toribio
    • 3
  • Amadou Bâ
    • 4
  1. 1.EA 926 DYNECAR, Université des Antilles et de la GuyaneUFR des Sciences Exactes et NaturellesPointe-à-Pitre, CedexFrance
  2. 2.UMR-CNRS 7138, Systématique-Adaptation-Evolution, Equipe “Symbiose”, UFR des Sciences Exactes et Naturelles, Département de BiologieUniversité des Antilles et de la GuyanePointe-à-Pitre CedexFrance
  3. 3.INRA Antilles Guyane, Unité de recherche en production végétaleLaboratoire de mycologie-flore pathogène du solPetit BourgFrance
  4. 4.LSTM-UMR 113, Université des Antilles et de la GuyaneUFR des Sciences Exactes et NaturellesPointe-à-PitreFrance

Personalised recommendations