Plant and Soil

, Volume 321, Issue 1–2, pp 83–115 | Cite as

Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective

  • Hans LambersEmail author
  • Christophe Mougel
  • Benoît Jaillard
  • Philippe Hinsinger
Review Article


Soils are the product of the activities of plants, which supply organic matter and play a pivotal role in weathering rocks and minerals. Many plant species have a distinct ecological amplitude that shows restriction to specific soil types. In the numerous interactions between plants and soil, microorganisms also play a key role. Here we review the existing literature on interactions between plants, microorganisms and soils, and include considerations of evolutionary time scales, where possible. Some of these interactions involve intricate systems of communication, which in the case of symbioses such as the arbuscular mycorrhizal symbiosis are several hundreds of millions years old; others involve the release of exudates from roots, and other products of rhizodeposition that are used as substrates for soil microorganisms. The possible reasons for the survival value of this loss of carbon over tens or hundreds of millions of years of evolution of higher plants are discussed, taking a cost-benefit approach. Co-evolution of plants and rhizosphere microorganisms is discussed, in the light of known ecological interactions between various partners in terrestrial ecosystems. Finally, the role of higher plants, especially deep-rooted plants and associated microorganisms in the weathering of rocks and minerals, ultimately contributing to pedogenesis, is addressed. We show that rhizosphere processes in the long run are central to biogeochemical cycles, soil formation and Earth history. Major anticipated discoveries will enhance our basic understanding and allow applications of new knowledge to deal with nutrient deficiencies, pests and diseases, and the challenges of increasing global food production and agroecosystem productivity in an environmentally responsible manner.


Biogeochemistry Evolution Nutrient acquisition Pedogenesis Rhizodeposition Rhizosphere Symbiosis Root exudation Weathering 


  1. Aguilar OM, Riva O, Peltzer E (2004) Analysis of rhizobium elti and of its symbiosis wild Phaseolus vulgaris support coevolution in centers of host diversification. Proc Natl Acad Sci USA 101:13548–13553PubMedCrossRefGoogle Scholar
  2. Akhter J, Mahmood K, Malik KA, Ahmed S, Murray R (2003) Amelioration of a saline sodic soil through cultivation of a salt-tolerant grass Leptochloa fusca. Environ Conserv 30:168–174CrossRefGoogle Scholar
  3. Akhter J, Murray R, Mahmood K, Malik KA, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258:207–216CrossRefGoogle Scholar
  4. Akiyama K, Hayashi H (2006) Strigolactones: chemicals signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931PubMedCrossRefGoogle Scholar
  5. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  6. Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Lévy J, Debellé F, Baek J-M, Kalo P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367PubMedCrossRefGoogle Scholar
  7. Arocena JM, Glowa KR (2000) Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. For Ecol Manage 133:61–70CrossRefGoogle Scholar
  8. Arocena JM, Glowa KR, Massicotte HB, Lavkulich L (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of a luvisol. Can J Soil Sci 79:25–35Google Scholar
  9. Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957PubMedCrossRefGoogle Scholar
  10. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  11. Bakker MR, George E, Turpault MP, Zhang JL, Zeller B (2004) Impact of Douglas-fir and Scots pine seedlings on plagioclase weathering under acidic conditions. Plant Soil 266:247–259CrossRefGoogle Scholar
  12. Bakker C, Rodenburg J, Van Bodegom PM (2005) Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275:111–122CrossRefGoogle Scholar
  13. Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci 96:3404–3411PubMedCrossRefGoogle Scholar
  14. Barré P, Velde B, Catel N, Abbadie L (2007a) Quantification of potassium addition or removal through plant activity on clay minerals by X-ray diffraction. Plant Soil 292:137–146CrossRefGoogle Scholar
  15. Barré P, Velde B, Abbadie L (2007b) Dynamic role of ‘illite-like’ clay minerals in temperate soils: facts and hypotheses. Biogeochemistry 82:77–88CrossRefGoogle Scholar
  16. Barré P, Montagnier C, Chenu C, Abbadie L, Velde B (2008) Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil 302:213–220CrossRefGoogle Scholar
  17. Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci USA 102:1302–1305PubMedCrossRefGoogle Scholar
  18. Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354PubMedCrossRefGoogle Scholar
  19. Béna G, Lyet A, Huguet T, Olivieri I (2005) Medicago–Sinorhizobium symbiotic specificity evolution and the geographic expansion of Medicago. J Evol Biol 18:1547–1558PubMedCrossRefGoogle Scholar
  20. Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612CrossRefGoogle Scholar
  21. Berner RA (1992) Weathering, plants, and the long-term carbon cycle. Geochim Cosmochim Acta 56:3225–3231CrossRefGoogle Scholar
  22. Berner RA (1997) Paleoclimate–The rise of plants and their effect on weathering and atmospheric CO2. Science 276:544–546CrossRefGoogle Scholar
  23. Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 30:182–204CrossRefGoogle Scholar
  24. Berthelin J, Leyval C (1982) Ability of symbiotic and non-symbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant Soil 68:369–377CrossRefGoogle Scholar
  25. Bertrand I, Hinsinger P (2000) Dissolution of iron oxyhydroxide in the rhizosphere of various crop species. J Plant Nutr 23:1559–1577CrossRefGoogle Scholar
  26. Bertrand I, Hinsinger P, Jaillard B, Arvieu JC (1999) Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite. Plant Soil 211:111–119CrossRefGoogle Scholar
  27. Blanchart E, Albrecht A, Chevallier T, Hartmann C (2004) The respective roles of roots and earthworms in restoring physical properties of Vertisol under a Digitaria decumbens pasture (Martinique, WI). Agric Ecosyst Environ 103:343–355CrossRefGoogle Scholar
  28. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207CrossRefGoogle Scholar
  29. Bolan NS, Robson AD, Barrow NJ (1987) Effect of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410CrossRefGoogle Scholar
  30. Bolland MDA, Sweetingham MW, Jarvis RJ (2000) Effect of applied phosphorus on the growth of Lupinus luteus, L. angustifolius and L. albus in acidic soils in the south-west of Western Australia. Aust J Exp Agric 40:79–92CrossRefGoogle Scholar
  31. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631CrossRefGoogle Scholar
  32. Bonkowski M, Jentschke G, Scheu S (2001) Contrasting effects of microbial partners in the rhizosphere: interactions between Norway Spruce seedlings (Picea abies Karst.), mycorrhiza (Paxillus involutus (Batsch) Fr.) and naked amoebae (protozoa). Appl Soil Ecol 18:193–204CrossRefGoogle Scholar
  33. Bonkowski M, Villenave C, Griffiths B, (2009) Rhizosphere fauna: functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–232. doi: 10.1007/s11104-009-0013-2 Google Scholar
  34. Bormann BT, Wang D, Bormann FH, Benoit R, April D, Snyder MC (1998) Rapid plant induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155CrossRefGoogle Scholar
  35. Boulet FM, Lambers H (2005) Characterisation of arbuscular mycorrhizal colonisation in the cluster roots of Hakea verrucosa F. Muell (Proteaceae) and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil 269:357–367CrossRefGoogle Scholar
  36. Bourrié G, Lelong F (1994) Les solutions du sol: du profil au bassin versant. In: Bonneau M, Souchier B (eds) Pédologie 2: constituants et Propriétés du Sol. Masson, Paris, pp 239–273Google Scholar
  37. Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230PubMedCrossRefGoogle Scholar
  38. Brenner ED, Stevenson DW, Twigg RW (2003) Cycads: evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci 8:446–452PubMedCrossRefGoogle Scholar
  39. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  40. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. doi: 10.1007/s11104-008-9877-9 Google Scholar
  41. Brundrett MC, Abbott LK (1991) Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Aust J Bot 39:445–457CrossRefGoogle Scholar
  42. Cailleau G, Braissant O, Verrecchia EP (2004) Biomineralization in plants as a long-term carbon sink. Naturwissenschaften 91:191–194PubMedCrossRefGoogle Scholar
  43. Cairney JWG, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205:181–192CrossRefGoogle Scholar
  44. Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M, Yilmaz A, Braun HJ (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189CrossRefGoogle Scholar
  45. Callot G, Chamayou H, Maertens C, Salsac L (1983) Mieux comprendre les interactions sol-racine. Incidence sur la nutrition minérale. INRA, Paris, p 326Google Scholar
  46. Callot G, Guyon A, Mousain D (1985a) Inter-relation entre les aiguilles de calcite et hyphes mycéliens. Agronomie 5:209–216CrossRefGoogle Scholar
  47. Callot G, Mousain D, Plassard C (1985b) Concentrations de carbonate de calcium sur les parois des hyphes mycéliens. Agronomie 5:143–150CrossRefGoogle Scholar
  48. Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266PubMedCrossRefGoogle Scholar
  49. Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577PubMedCrossRefGoogle Scholar
  50. Casarin V, Plassard C, Souche G, Arvieu JC (2003) Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23:461–469CrossRefGoogle Scholar
  51. Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilisation of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–185CrossRefGoogle Scholar
  52. Chaignon V, Di Malta D, Hinsinger P (2002) Fe-deficiency increases Cu acquisition by wheat cropped in a Cucontaminated vineyard soil. New Phytol 154:121–130CrossRefGoogle Scholar
  53. Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soils aggregate stability. Soil Sci Soc Am J 64:1479–1486Google Scholar
  54. Claassen N, Jungk A (1982) Kaliumdynamik im wurzelnahen Boden in Beziehung zur Kaliumaufnahme von Maispflanzen. Z Pflanzenern Bodenkd 145:513–525CrossRefGoogle Scholar
  55. Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187CrossRefGoogle Scholar
  56. Clegg MT, Cummings MP, Durbin ML (1997) The evolution of plant nuclear genes. Proc Natl Acad Sci USA 94:7791–7798PubMedCrossRefGoogle Scholar
  57. Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefGoogle Scholar
  58. Cochran MF, Berner RA (1996) Promotion of chemical weathering by higher plants: field observations on Hawaiian basalts. Chem Geol 132:71–77CrossRefGoogle Scholar
  59. Connolly JH, Shortle WC, Jellison J (1999) Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Bot 77:179–187CrossRefGoogle Scholar
  60. Coroneos C, Hinsinger P, Gilkes RJ (1996) Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species. Fert Res 45:143–152CrossRefGoogle Scholar
  61. Courchesne F, Gobran GR (1997) Mineralogical variation of bulk and rhizosphere soils from a Norway spruce stand. Soil Sci Soc Am J 61:1245–1249Google Scholar
  62. Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–86PubMedCrossRefGoogle Scholar
  63. Creswell HP, Kirkegaard JA (1995) Subsoil amelioration by plant roots – the process and the evidence. Austr J Soil Res 33:221–239CrossRefGoogle Scholar
  64. Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Muellerdombois D, Vitousek PM (1995) Changes in soil-phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424CrossRefGoogle Scholar
  65. Crocker LJ, Schwintzer CR (1993) Factors affecting formation of cluster roots in Myrica gale seedlings in water culture. Plant Soil 152:287–298CrossRefGoogle Scholar
  66. Cromack K, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of hypogeous fungus. Hysterangium crassum. Soil Biol Biochem 11:463–468CrossRefGoogle Scholar
  67. Czarnes S, Hiller S, Dexter AR, Hallett PD, Bartoli F (1999) Root : soil adhesion in the maize rhizosphere: the rheological approach. Plant Soil 211:69–86CrossRefGoogle Scholar
  68. Darrah PR (1991) Models of the rhizosphere. I. Microbial population dynamics around a root releasing soluble and insoluble carbon. Plant Soil 133:187–199CrossRefGoogle Scholar
  69. Dehérain PP (1873) Cours de Chimie agricole. Hachette, ParisGoogle Scholar
  70. Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321PubMedGoogle Scholar
  71. Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702PubMedGoogle Scholar
  72. Denison RF (2000) Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am Nat 156:567–576CrossRefGoogle Scholar
  73. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci 103:18450–18457PubMedCrossRefGoogle Scholar
  74. Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J Exp Bot 58:3765–3773PubMedCrossRefGoogle Scholar
  75. Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  76. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  77. Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Science Tech, Inc., MadisonGoogle Scholar
  78. Dorioz JM, Roberts M, Chenu C (1993) The role of roots, fungi and bacteria, on clay particle organization. An experimental approach. Geoderma 56:179–194CrossRefGoogle Scholar
  79. Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of modulation. Am J Bot 84:541–554CrossRefGoogle Scholar
  80. Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332CrossRefGoogle Scholar
  81. Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895CrossRefGoogle Scholar
  82. Ebert D (1994) Virulence and local adaptation of a horizontally transmitted parasite. Science 265:1084–1086PubMedCrossRefGoogle Scholar
  83. Ebert D (1998) Experimental evolution of parasites. Science 282:1432–1435PubMedCrossRefGoogle Scholar
  84. Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303. doi: 10.1007/s1104-008-9839-2 Google Scholar
  85. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843CrossRefGoogle Scholar
  86. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. doi: 10.1007/s11104-008-9833-8 Google Scholar
  87. Frey J, Frey T, Pajuste K (2004) Input-output analysis of macroelements in ICP-IM catchment area, Estonia. Landsc Urban Plan 67:217–223CrossRefGoogle Scholar
  88. Freytet P, Plaziat JC, Verrecchia EP (1997) A classification of rhizogenic (root-formed) calcretes, with examples from the upper Jurassic lower Cretaceous of Spain and upper Cretaceous of southern France. Sediment Geol 110:299–303CrossRefGoogle Scholar
  89. Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  90. Frühling M, Roussel H, Gianinazzi-Pearson V, Pühler A, Perlick AM (1997) The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum Mol. Plant-Microbe Interact 10:124–131CrossRefGoogle Scholar
  91. Gage DJ, Margolin W (2000) Hanging by a thread: invasion of legume plants by rhizobia. Curr Opin Microbiol 3:613–617PubMedCrossRefGoogle Scholar
  92. Gardner WK, Boundy KA (1983) The acquisition of phosphate by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil 70:391–402CrossRefGoogle Scholar
  93. Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758CrossRefGoogle Scholar
  94. Glick BR (1995) The enhancement of plant-growth by free-living bacteria. Can J Microbiol 41:109–117Google Scholar
  95. Graustein WC, Cromack K, Sollins P (1977) Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198:1252–1254PubMedCrossRefGoogle Scholar
  96. Gull M, Hafeez FY, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Aust J Exp Agric 38:1521–1526Google Scholar
  97. Halliday J, Pate JS (1976) Symbiotic nitrogen fixation by blue green algae in the cycad Macrozamia riedlei: physiological characteristics and ecological significance. Aust J Plant Physiol 3:349–358CrossRefGoogle Scholar
  98. Harris JN, New PB, Martin PM (2006) Laboratory tests can predict beneficial effects of phosphate-solubilising bacteria on plants. Soil Biol Biochem 38:1521–1526CrossRefGoogle Scholar
  99. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14CrossRefGoogle Scholar
  100. Heath KD, Tiffin P (2007) Context dependence in the coevolution of plant and rhizobial mutualists. Proc Roy Soc B 274:1905–1912CrossRefGoogle Scholar
  101. Heath KD, Tiffin P (2009) Stabilizing mechanisms in a legume-rhizobium mutualism. Evolution 63:652–662PubMedCrossRefGoogle Scholar
  102. Hetrick BAD, Wilson GWT, Gill BS, Cox TS (1995) Chromosome location of mycorrhizal responsive genes in wheat. Can J Bot 73:891–897CrossRefGoogle Scholar
  103. Hibbert DS, Gilbert LB, Donoghue M (2000) Evolutionary instability of ectomycorrhizal symbiosis in basidiomycetes. Nature 407:506–508CrossRefGoogle Scholar
  104. Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265CrossRefGoogle Scholar
  105. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195CrossRefGoogle Scholar
  106. Hinsinger P (2002) Potassium. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, Inc., New YorkGoogle Scholar
  107. Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J Soil Sci 44:525–534CrossRefGoogle Scholar
  108. Hinsinger P, Elsass F, Jaillard B, Robert M (1993) Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. J Soil Sci 44:535–545CrossRefGoogle Scholar
  109. Hinsinger P, Fernandes Barros ON, Benedetti MF, Noack Y, Callot G (2001) Plant-induced weathering of a basaltic rock: experimental evidence. Geochim Cosmochim Acta 65:137–152CrossRefGoogle Scholar
  110. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59CrossRefGoogle Scholar
  111. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303PubMedCrossRefGoogle Scholar
  112. Hinsinger P, Plassard C, Jaillard B (2006) The rhizosphere: a new frontier in soil biogeochemistry. J Geochem Explor 88:210–213CrossRefGoogle Scholar
  113. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi: 10.1007/s11104-008-9885-9 Google Scholar
  114. Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339CrossRefGoogle Scholar
  115. Hodge A, Robinson D, Fitter AH (2000) Are microorganisms more effective than plants at competiting for nitrogen ? Trends Plant Sci 5:304–308PubMedCrossRefGoogle Scholar
  116. Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina A, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, Van Hees PAW, Van Breemen N (2004) The role of fungi in weathering. Frontiers Ecol Environ 2:258–264Google Scholar
  117. Högberg P (1990) 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol 115:483–486CrossRefGoogle Scholar
  118. Holmqvist J, Øgaard AF, Öborn I, Edwards AC, Mattsson L, Sverdrup H (2003) Application of the PROFILE model to estimate potassium release from mineral weathering in Northern European agricultural soils. Eur J Agron 20:149–163CrossRefGoogle Scholar
  119. Hopkins NA (1987) Mycorrhizae in a California serpentine grassland community. Can J Bot 65:484–487CrossRefGoogle Scholar
  120. Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annu Rev Ecol Evol Syst 35:623–650CrossRefGoogle Scholar
  121. Horner HT, Wagner BL (1995) Calcium oxalate formation in higher plants. In: Khan SR (ed) Calcium oxalate in biological systems. CRC, Boca Raton, pp 53–72Google Scholar
  122. Huang WH, Keller WD (1970) Dissolution of rock-forming silicate minerals in organic acids: simulated fist-stage weathering of fresh mineral surfaces. Am Mineral 57:2076–2094Google Scholar
  123. Jaillard B (1982) Relation entre dynamique de l'eau et organisation morphologique d'un sol calcaire. Science du Sol 20:31–52Google Scholar
  124. Jaillard B (1983) Mise en évidence de la calcitisation des cellules corticales de racines de Graminées en milieu carbonaté. Compte Rendu de l'Académie des Sciences de Paris, t 297, série II, 293–296Google Scholar
  125. Jaillard B (1984) Mise en évidence de la néogenèse de sables calcaires sous l'influence des racines: incidence sur la granulométrie du sol. Agronomie 4:91–100CrossRefGoogle Scholar
  126. Jaillard B (1985) Activité racinaire et rhizostructures en milieu carbonaté. Pédologie 35:297–313Google Scholar
  127. Jaillard B (1987a) Les structures rhizomorphes calcaires: modèle de réorganisation des minéraux du sol par les racines. Thèse d'Etat, USTL, Montpellier, 228pGoogle Scholar
  128. Jaillard B (1987b) Techniques for studying the ionic environment at the soil-root interface. In: Methodology in soil-K research (I.P.I. Ed.). International Potassium Institute, Bâle, pp 231-245Google Scholar
  129. Jaillard B, Guyon A, Maurin AF (1991) Structure and composition of calcified roots, and their identification in calcareous soils. Geoderma 50:197–210CrossRefGoogle Scholar
  130. Jassogne L (2008) Characterisation of porosity and root growth in a sodic texture-contrast soil. PhD Thesis, The University of Western AustraliaGoogle Scholar
  131. Jeong SC, Liston L, Myrold DD (1997) Molecular phylogeny of the genus Ceanothus using ndhF and rbcL sequences. Theor Appl Genet 94:825–857CrossRefGoogle Scholar
  132. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  133. Jonsson LM, Nilsson LC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364CrossRefGoogle Scholar
  134. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ (CO2)-13C pulse labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  135. Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  136. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  137. Jones DL, Darrah PR, Kochian LV (1996) Critical evaluation of organic acid mediated dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180:57–66CrossRefGoogle Scholar
  138. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480CrossRefGoogle Scholar
  139. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33. doi: 10.1007/s11104-009-9925-0 Google Scholar
  140. Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683CrossRefGoogle Scholar
  141. Keel C, Weller DM, Nastch A, Défago G, Cook RJ, Thomashow LS (1996) Conservation of the 2, 4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62:552–563PubMedGoogle Scholar
  142. Kenrick P (2001) Turning over a new leaf. Nature 410:309–310PubMedCrossRefGoogle Scholar
  143. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  144. Klappa CF (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–629CrossRefGoogle Scholar
  145. Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195CrossRefGoogle Scholar
  146. Kodama H, Nelson S, Yang F, Kohyama N (1994) Mineralogy of rhizospheric and non-rhizospheric soils in corn fields. Clays Clay Min 42:755–763CrossRefGoogle Scholar
  147. Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E (1999) Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytol 144:323–330CrossRefGoogle Scholar
  148. Kosir A (2004) Microcodium revisited: root calcification products of terrestrial plants on carbonate-rich substrates. J Sediment Res 74:845–857CrossRefGoogle Scholar
  149. Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N (2009) Endophytic cyanobacteria in a 400-million-yr-old land plant:a scenario for the origin of a symbiosis? Rev Palaeobot Palynol 153:62–69CrossRefGoogle Scholar
  150. Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228CrossRefGoogle Scholar
  151. Kuchenbuch R, Jungk A (1982) A method for determining concentration profiles at the soil-root interface by thin slicing rhizospheric soil. Plant Soil 68:391–394CrossRefGoogle Scholar
  152. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498CrossRefGoogle Scholar
  153. Kuzyakov Y, Shevtzova TE, Pustovoytov K (2006) Carbonate re-crystallization in soil revealed by 14C labeling: experiment, model and significance for paleo-environmental reconstructions. Geoderma 131:45–58CrossRefGoogle Scholar
  154. Lambers H (1987) Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function - effects of the physical environment. Cambridge University Press, Cambridge, pp 125–145Google Scholar
  155. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713PubMedCrossRefGoogle Scholar
  156. Lambers H, Shaver G, Raven JA, Smith SE (2008a) N and P-acquisition change as soils age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  157. Lambers H, Chapin FS III, Pons TL (2008b) Plant physiological ecology, 2nd edn. Springer, New YorkGoogle Scholar
  158. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, Van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254PubMedCrossRefGoogle Scholar
  159. Lapeyrie F (1988) Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus. Plant Soil 110:3–8CrossRefGoogle Scholar
  160. Leake JR, Read DJ (1989) The biology of mycorrhiza in the Ericaceae. New Phytol 112:69–76CrossRefGoogle Scholar
  161. Lemanceau P, Alabouvette C (1993) Suppression of fusarium-wilts by fluorescent psedomonads: mechanisms and applications. Biocontrol Sci Technol 3:219–234CrossRefGoogle Scholar
  162. Lerat S, Lapointe L, Gutjahr S, Piché Y, Vierheilig H (2003) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157:589–595CrossRefGoogle Scholar
  163. Leyval C, Berthelin J (1989) Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110CrossRefGoogle Scholar
  164. Leyval C, Laheurte F, Belgy G, Berthelin J (1990) Weathering of micas in the rhizospheres of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:105–109Google Scholar
  165. López-Ráez JA, Charnikhova T, Gómez-Roldán V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874PubMedCrossRefGoogle Scholar
  166. Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570PubMedCrossRefGoogle Scholar
  167. Lovelock JE (1993) The soil as a model for the Earth. Geoderma 57:213–215CrossRefGoogle Scholar
  168. Lovelock JE (2003) The living Earth. Nature 426:769–770PubMedCrossRefGoogle Scholar
  169. Lucas Y, Luizão FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260:521–523PubMedCrossRefGoogle Scholar
  170. Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56CrossRefGoogle Scholar
  171. Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24:267–281CrossRefGoogle Scholar
  172. Ma JF, Nomoto K (1994) Biosynthetic pathway of 3-epihydroxymugineic acid and 3-hydroxymugineic acid in gramineous plants. Soil Sci Plant Nutri 40:311–317Google Scholar
  173. Ma JF, Ueno H, Ueno D, Rombolà AD, Iwashita T (2003) Characterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra. Plant Soil 256:131–137CrossRefGoogle Scholar
  174. Marschner H, Römheld V, Kissel M (1987) Localization of phytosiderophores release and of iron uptake along intact barley roots. Physiol Plant 71:157–162CrossRefGoogle Scholar
  175. Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 152:145–154CrossRefGoogle Scholar
  176. McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann Rev Plant Physiol Plant Mol Biol 50:695–718CrossRefGoogle Scholar
  177. Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151–165CrossRefGoogle Scholar
  178. Micallef SA, Shiaris MP, Colon-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot. doi: 10.1093/jxb/erp053 PubMedGoogle Scholar
  179. Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96:737–743PubMedCrossRefGoogle Scholar
  180. Mora CI, Driese SG, Colarusso LA (1996) Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271:1105–1107CrossRefGoogle Scholar
  181. Morin N (1993) Microcodium: architecture, structure et composition. Comparaison avec les racines calcifiées. Thèse, USTL, Montpellier, 137 pGoogle Scholar
  182. Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different development stages of Medicago truncatula Jemalong J5. New Phytol 170:165–175PubMedCrossRefGoogle Scholar
  183. Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570CrossRefGoogle Scholar
  184. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396CrossRefGoogle Scholar
  185. Niebes JF, Hinsinger P, Jaillard B, Dufey JE (1993) Release of non exchangeable potassium from different size fractions of two highly K-fertilized soils in the rhizosphere of rape (Brassica napus cv Drakkar). Plant Soil 155(156):403–406CrossRefGoogle Scholar
  186. Oremus PAI, Otten H (1981) Factors affecting growth and nodulation of Hippophae rhamnoides L. ssp. rhamnoides in soils from two successional stages of dune formation. Plant Soil 63:317–331CrossRefGoogle Scholar
  187. Pankhurst CE, Pierret A, Hawke BG, Kirby JM (2002) Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia. Plant Soil 238:11–20CrossRefGoogle Scholar
  188. Parfitt RL (1979) The availability of P from phosphate-goethite bridging complexes. Desorption and uptake by ryegrass. Plant Soil 53:55–65CrossRefGoogle Scholar
  189. Parfitt RL, Ross DJ, Coomes DA, Richardson SJ, Smale MC, Dahlgren RA (2005) N and P in New Zealand soil chronosequences and relationships with foliar N and P. Biogeochemistry 75:305–328CrossRefGoogle Scholar
  190. Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150CrossRefGoogle Scholar
  191. Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370PubMedCrossRefGoogle Scholar
  192. Pate JS, Verboom WH (2009) Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept. Ann Bot 103:673–685PubMedCrossRefGoogle Scholar
  193. Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560CrossRefGoogle Scholar
  194. Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750CrossRefGoogle Scholar
  195. Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high phosphorus supply: analysis of carbon costs. Plant Physiol 101:1063–1071PubMedGoogle Scholar
  196. Perry LG, Thelen GC, Ridenour WM, Callaway RM, Paschke MW, Vivanco JM (2007) Concentrations of the Allelochemical (±)-catechin in Centaurea maculosa soils. J Chem Ecol 33:2337–2344PubMedCrossRefGoogle Scholar
  197. Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Austr J Bot 8:38–50CrossRefGoogle Scholar
  198. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi: 10.1007/s11104-008-9568-6 Google Scholar
  199. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  200. Raven JA (2002) The evolution of cyanobacterial symbioses. Proc R Irish Acad 102B:3–6CrossRefGoogle Scholar
  201. Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401PubMedGoogle Scholar
  202. Raynaud X, Lata J-C, Leadley PW (2006) Soil microbial loop and nutrient uptake by plants: a test using a coupled C:N model of plant–microbial interactions. Plant Soil 287:95–116CrossRefGoogle Scholar
  203. Raynaud X, Jaillard B, Leadley PW (2008) Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach. Amer Nat 171:44–58CrossRefGoogle Scholar
  204. Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374CrossRefGoogle Scholar
  205. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  206. Reddell P, Yun Y, Shipton WA (1997) Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Aust J Bot 45:41–51CrossRefGoogle Scholar
  207. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  208. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151:705–716CrossRefGoogle Scholar
  209. Reichard PU, Kraemer SM, Frazier SW, Kretzschmar R (2005) Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 276:115–132CrossRefGoogle Scholar
  210. Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650CrossRefGoogle Scholar
  211. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedCrossRefGoogle Scholar
  212. Retallack GJ (1997) Early forest soils and their role in Devonian global change. Science 276:583–585PubMedCrossRefGoogle Scholar
  213. Reynolds HL, Packer A, Bever JD, Clay K (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291CrossRefGoogle Scholar
  214. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906Google Scholar
  215. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 Google Scholar
  216. Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450CrossRefGoogle Scholar
  217. Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225CrossRefGoogle Scholar
  218. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114PubMedCrossRefGoogle Scholar
  219. Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234CrossRefGoogle Scholar
  220. Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134CrossRefGoogle Scholar
  221. Ronquist F (1998) Phylogenetic approaches in coevolution and biogeography. Zool Scripta 26:313–322CrossRefGoogle Scholar
  222. Rudrappa T, Bonsall J, Gallagher JL, Seliskar DM, Bais HP (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918PubMedCrossRefGoogle Scholar
  223. Rygiewicz PT, Andersen CP (1994) Mycorrhizae alter quality and quantity of carbon allocated below ground. Nature 369:58–60CrossRefGoogle Scholar
  224. Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160PubMedCrossRefGoogle Scholar
  225. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  226. Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222CrossRefGoogle Scholar
  227. Schippers B, Bakker AW, Bakker P (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358CrossRefGoogle Scholar
  228. Schopf JW, Kudryavtsev AB, Agresti DG, Wdowlak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76PubMedCrossRefGoogle Scholar
  229. Schüßler A, Kluge M (2000) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for Arbuscular mycorrhizal research. In: Hock B (ed) The mycota IX fungal associations. Springer-Verlag, Berlin, pp 151–161Google Scholar
  230. Schüßler A, Gehrig H, Schwarzott D, Walker C (2001) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15CrossRefGoogle Scholar
  231. Semchenko M, Zobel K, Heinemeyer A, Hutchings MJ (2008) Foraging for space and avoidance of physical obstructions by plant roots: a comparative study of grasses from contrasting habitats. New Phytol 179:1162–1170PubMedGoogle Scholar
  232. Schwartzman D, Volk T (1989) Biotic enhancement of weathering and the habitability of Earth. Nature 340:457–460CrossRefGoogle Scholar
  233. Shane MW, Lambers H (2005a) Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply. Physiol Plant 124:441–450CrossRefGoogle Scholar
  234. Shane MW, Lambers H (2005b) Cluster roots: a curiosity in context. Plant Soil 274:99–123CrossRefGoogle Scholar
  235. Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004) Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135:549–560PubMedCrossRefGoogle Scholar
  236. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29:1989–1999PubMedCrossRefGoogle Scholar
  237. Simonsson M, Andersson S, Andrist-Rangel Y, Hillier S, Mattsson L, Öborn I (2007) Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma 140:188–198CrossRefGoogle Scholar
  238. Skene KR, Sprent JI, Raven JA, Herdman L (2000) Myrica gale L. J Ecol 88:1079–1094CrossRefGoogle Scholar
  239. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, CityGoogle Scholar
  240. Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci USA 96:4786–4790PubMedCrossRefGoogle Scholar
  241. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedCrossRefGoogle Scholar
  242. Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651PubMedCrossRefGoogle Scholar
  243. Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25PubMedCrossRefGoogle Scholar
  244. Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581PubMedCrossRefGoogle Scholar
  245. Sprent JI, Raven JA (1992) Evolution of nitrogen-fixing root nodules symbioses. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation: achievements and objectives. Chapman & Hall, New York, pp 461–496Google Scholar
  246. Springob G, Richter J (1998) Measuring interlayer potassium release rates from soil materials. II. A percolation procedure to study the influence of the variable ‘solute K’ in the < 1…10 µM range. Z Pflanzenern Bodenkd 161:323–329Google Scholar
  247. Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plant. J Plant Nutr 7:469–477CrossRefGoogle Scholar
  248. Tamietti G, Ferraris L, Matta A (1993) Physiological-responses of tomato plants grown in Fusarium suppressive soil. J Phytopathol - Phytopathologische Zeitschrift 138:66–76CrossRefGoogle Scholar
  249. Taylor AB, Velbel MA (1991) Geochemical mass balances and weathering rates in forested watersheds of the Southern Blue Ridge II. Effects of botanical uptake terms. Geoderma 51:29–50CrossRefGoogle Scholar
  250. Taylor LL, Leake JR, Quirk J, Hardy K, Banwarts SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191PubMedCrossRefGoogle Scholar
  251. Thompson JN (1997) Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:1619–1623CrossRefGoogle Scholar
  252. Thompson JN (1999) The evolution of species interaction. Science 284:2116–2118PubMedCrossRefGoogle Scholar
  253. Thompson JN, Burdon JJ (1992) Gene-for-gene coevolution between plants and parasites. Nature 360:121–125CrossRefGoogle Scholar
  254. Tinker PB, Durall DM, Jones MD (1994) Carbon use efficiency in mycorrhizas–Theory and sample calculations. New Phytol 128:115–122CrossRefGoogle Scholar
  255. Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427PubMedCrossRefGoogle Scholar
  256. Turlings TCJ, Wäckers FL (2004) Recruitment of predators and parasitoids by herbivore-damaged plants. In: Cardé RT, Millar J (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 21–75Google Scholar
  257. Turpault MP, Utérano C, Boudot JP, Ranger J (2005) Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry. Plant Soil 275:327–336CrossRefGoogle Scholar
  258. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 79:3019–3027CrossRefGoogle Scholar
  259. Van Breemen N (1993) Soils as biotic constructs favouring net primary productivity. Geoderma 57:183–211CrossRefGoogle Scholar
  260. Van Breemen N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters N. Nature 307:599–604CrossRefGoogle Scholar
  261. Van Ghelue M, Løvaas E, Ringø E, Solheim B (1997) Early interactions between Alnus glutinosa (L.) Gaertn. And Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol Plant 99:579–587CrossRefGoogle Scholar
  262. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  263. Van Tol RWHM, Van der Sommen ATC, Boff MIC, Van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294CrossRefGoogle Scholar
  264. Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation or exquisite adaptation. Annu Rev Plant Physiol Plant Mol Biol 42:373–392CrossRefGoogle Scholar
  265. Vance CP, Uhde-Stone C, Allen DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable source. New Phytol 157:423–447CrossRefGoogle Scholar
  266. Velbel MA, Price JR (2007) Solute geochemical mass-balances and mineral weathering rates in small watersheds: Methodology, recent advances, and future directions. Appl Geochem 22:1682–1700CrossRefGoogle Scholar
  267. Verboom WH, Pate JS (2003) Relationships between cluster root-bearing taxa and laterite across landscapes in southwest Western Australia: an approach using airborne radiometric and digital elevation models. Plant Soil 248:321–333CrossRefGoogle Scholar
  268. Verboom WH, Pate JS (2006a) Bioengineering of soil profiles in semiarid ecosystems: the ‘phytotarium’ concept. A review. Plant Soil 289:71–102CrossRefGoogle Scholar
  269. Verboom WH, Pate JS (2006b) Evidence of active biotic influences in pedogenetic processes. Case studies from semiarid ecosystems of south-west Western Australia. Plant Soil 289:103–121CrossRefGoogle Scholar
  270. Verrecchia EP (1990) Litho-diagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semiarid calcretes, Nazareth, Israel. Geomicrobiol J 8:87–99CrossRefGoogle Scholar
  271. Verrecchia EP, Dumont JL (1996) A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry 35:447–470CrossRefGoogle Scholar
  272. Vessey JK, Pawlowski K, Bergman B (2005) N2-fixing symbiosis: legumes, actinorhizal plants, and cycads. Plant Soil 274:51–78CrossRefGoogle Scholar
  273. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115CrossRefGoogle Scholar
  274. Walker TW, Syers JK (1976) Fate of phosphorus during pedogenesis. Geoderma 15:1–19CrossRefGoogle Scholar
  275. Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256CrossRefGoogle Scholar
  276. Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32CrossRefGoogle Scholar
  277. Wang H, Greenberg SE (2007) Reconstructing the response of C3 and C4 plants to decadal-scale climate change during the late Pleistocene in southern Illinois using isotopic analyses of calcified rootlets. Quaternary Res 67:136–142CrossRefGoogle Scholar
  278. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  279. Watkins NK, Fitter AH, Graves JD, Robinson D (1996) Carbon transfer between C-3 and C-4 plants linked by a common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol Biochem 28:471–477CrossRefGoogle Scholar
  280. Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716PubMedCrossRefGoogle Scholar
  281. Weir T, Bais H, Stull V, Callaway R, Thelen G, Ridenour W, Bhamidi S, Stermitz F, Vivanco J (2006) Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta 223:785–795PubMedCrossRefGoogle Scholar
  282. Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006) White lupin has developed a complex strategy to limit microbial degradation of the secreted citrate required for phosphate nutrition. Plant Cell Environ 29:919–927PubMedCrossRefGoogle Scholar
  283. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407CrossRefGoogle Scholar
  284. Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere–related traits. Plant Soil 321:409–430. doi: 10.1007/s11104-008-9693-2 Google Scholar
  285. Wu T, Sharda JN, Koide RT (2003) Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein–tannin complex as an N source by red pine (Pinus resinosa). New Phytol 159:131–139CrossRefGoogle Scholar
  286. Yao Q, Li X, Feng G, Christie P (2001) Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230:279–285CrossRefGoogle Scholar
  287. Yang Y-Y, Jung J-Y, Suh SW-Y, H-S LY (2000) Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol 124:1019–1026PubMedCrossRefGoogle Scholar
  288. Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494PubMedCrossRefGoogle Scholar
  289. Yu JQ, Shou SY, Qian YR, Zhu ZJ, Hu WH (2000) Autotoxic potential of cucurbit crops. Plant Soil 223:147–151CrossRefGoogle Scholar
  290. Yunusa IAM, Newton PJ (2003) Plants for amelioration of subsoil constraints and hydrological control: the primer-plant concept. Plant Soil 257:261–281CrossRefGoogle Scholar
  291. Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751CrossRefGoogle Scholar
  292. Zuo Y, Zhang F, Li X, Cao Y (2000) Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 220:13–25CrossRefGoogle Scholar
  293. Zwart KB, Kuikman PJ, van Veen JA (1994) Rhizosphere protozoa: their significance in nutrient dynamics. In: Darbyshire JF (ed) Soil protozoa. CAB international, Wallingford, pp 93–122Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hans Lambers
    • 1
    Email author
  • Christophe Mougel
    • 2
  • Benoît Jaillard
    • 3
  • Philippe Hinsinger
    • 3
  1. 1.School of Plant BiologyThe University of Western AustraliaCrawleyAustralia
  2. 2.INRA, UMR 1229 Microbiologie du Sol et de l’Environnement, CMSEDijonFrance
  3. 3.INRA, UMR 1222 Eco&Sols Ecologie Fonctionnelle & Biogéochimie des Sols (INRA – IRD – SupAgro)MontpellierFrance

Personalised recommendations