Advertisement

Plant and Soil

, Volume 321, Issue 1–2, pp 259–278 | Cite as

Rhizosphere microbiota interfers with plant-plant interactions

  • A. Sanon
  • Z. N. Andrianjaka
  • Y. Prin
  • R. Bally
  • J. Thioulouse
  • G. Comte
  • R. Duponnois
Review Article

Abstract

Diversity, structure and productivity of above-ground compartment of terrestrial ecosystems have been generally considered as the main drivers of the relationships between diversity and ecosystem functioning. More recently it has been suggested that plant population dynamics may be linked with the development of the below-ground community. The biologically active soil zone where root-root and root-microbe communications occur is named “Rhizosphere” where root exudates play active roles in regulating rhizosphere interactions. Root exudation can regulate the soil microbial community, withstand herbivory, facilitate beneficial symbioses, modify the chemical and physical soil properties and inhibit the growth of competing plant species. In this review, we explore the current knowledge assessing the importance of root exudates in plant interactions, in communications between parasitic plants and their hosts and how some soil microbial components could regulate plant species coexistence and change relationships between plants. This review will be focussed on several well documented biological processes regulating plant-plant communications such as exotic plant species invasions, negative root-root communication (allelopathy) and parasitic plant / host plant interactions and how some soil microbial components can interfere with signal traffic between roots. The reported data show that the overall effect of one plant to another results from multiple interacting mechanisms where soil microbiota can be considered as a key component.

Keywords

Allelopathy Rhizosphere Plant invasions Plant-soil feedbacks Parasitic plant 

References

  1. Aarsen WL (1990) Ecological combining ability and competitive combining in plants toward a general evolutionary theory of coexistence in systems of competition. Am Nat 122:707–731. doi: 10.1086/284167 CrossRefGoogle Scholar
  2. Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxilc acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174. doi: 10.1073/pnas.76.1.170 PubMedCrossRefGoogle Scholar
  3. Adams WA, Gibbs RJ (1994) Natural turf for sport and emenity: science and practice. CAB International, Wallingford, UKGoogle Scholar
  4. Albrecht H, Yoder JI, Phillips DA (1999) Flavonoids promote haustoria formation in the root parasite Tryphysaria versicolor. Plant Physiol 119:585–591. doi: 10.1104/pp.119.2.585 PubMedCrossRefGoogle Scholar
  5. Al-Menoufi MOA, Mostafa AK, Zaitoun FMF (1986) Studies on Orobanche spp. Seed germination as affected by auxins and kinetin. Alexandria Sci Exch 7(3):277–292Google Scholar
  6. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96. doi: 10.1023/A:1004301423150 CrossRefGoogle Scholar
  7. Babiker ACT, Cai T, Ejeta G, Butler LG, Woodson WR (1994) Enhancement of biosynthesis and germination with thidiazuron and some selected auxins in Striga asiatica seeds. Physiol Plant 91:529–536. doi: 10.1111/j.1399-3054.1994.tb02984.x CrossRefGoogle Scholar
  8. Babiker ACT, Ma Y, Sugimoto Y, Inanaga S (2000) Conditioning period, CO2 and GR24 influence ethylene biosynthesis and germination of Striga hermonthica. Physiol Plant 109:75–80. doi: 10.1034/j.1399-3054.2000.100111.x CrossRefGoogle Scholar
  9. Bais HP, Walker TS, Stermitz FR, Hufbauer RA, Vivanco JM (2002) Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179. doi: 10.1104/pp.011019 PubMedCrossRefGoogle Scholar
  10. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi: 10.1016/j.tplants.2003.11.008 PubMedCrossRefGoogle Scholar
  11. Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge of agriculture. Can J Microbiol 36:591–608Google Scholar
  12. Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molécular, agricultural and environmental advances (1997–2003). Can J Microbiol 50:521–577. doi: 10.1139/w04-035 PubMedCrossRefGoogle Scholar
  13. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography and evolution of dormancy and germination. Academic Press, New York, p 700Google Scholar
  14. Beckstead J, Parker IM (2003) Invasiveness of Ammophila arenaria: Realease from spoil-born pathogens? Ecology 84:2824–2831. doi: 10.1890/02-0517 CrossRefGoogle Scholar
  15. Belnap J, Phillips SL (2001) Soil biota in an un-grazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol Appl 11:1261–1275. doi: 10.1890/1051-0761(2001)011[1261:SBIAUG]2.0.CO;2 CrossRefGoogle Scholar
  16. Berner DK, Kling JG, Singh BB (1995) Striga research and control: a perspective from Africa. Plant Dis 79:23–35Google Scholar
  17. Bethlenfalvay GJ (1992) Mycorrhizae and crop productivity. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy pp 1–27Google Scholar
  18. Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977. doi: 10.2307/1941601 CrossRefGoogle Scholar
  19. Bever JD (2003) Soil community feedback nd the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473. doi: 10.1046/j.1469-8137.2003.00714.x CrossRefGoogle Scholar
  20. Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 3:205–214Google Scholar
  21. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: The utility of the feedback approach. J Ecol 85:561–573. doi: 10.2307/2960528 CrossRefGoogle Scholar
  22. Boerner REJ, Brinkman JA (2003) Fire frequency and soil enzyme activity in southern Ohio oak-hickory forests. Appl Soil Ecol 23:137–146. doi: 10.1016/S0929-1393(03)00022-2 CrossRefGoogle Scholar
  23. Cabin RJ, Weller SG, Lorence DH, Cordell S, Hadway LJ, Montgomery R, Goo D, Urakami A (2002) Effects of light, alien grass and native species additions on Hawaiian dry forest restoration. Ecol Appl 12:1595–1610. doi: 10.1890/1051-0761(2002)012[1595:EOLAGA]2.0.CO;2 CrossRefGoogle Scholar
  24. Callaway RM, Ridenour WM (2004) Novel weapons: Invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443CrossRefGoogle Scholar
  25. Callaway RM, Newingham B, Zabinski CA, Mahall BE (2001) Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbors. Ecol Lett 4:429–433. doi: 10.1046/j.1461-0248.2001.00251.x CrossRefGoogle Scholar
  26. Callaway RM, Mahall BE, Wicks C, Pankey J, Zabinski C (2003) Soil fungi and the effects of an invasive forb on grasses: neighbor identity matters. Ecology 84:129–135. doi: 10.1890/0012-9658(2003)084[0129:SFATEO]2.0.CO;2 CrossRefGoogle Scholar
  27. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi: 10.1038/nature02322 PubMedCrossRefGoogle Scholar
  28. Carey EV, Marler MJ, Callaway RM (2004) Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol 172:133–141. doi: 10.1023/B:VEGE.0000026031.14086.f1 CrossRefGoogle Scholar
  29. CBD (2006) Invasive Alien Species. Convention on Biological Diversity. Web site: http://www.biodiv.org/programmes/cross-cutting/alien/
  30. Cechin I, Press MC (1993) Nitrogen relations of the sorghum-Striga hermonthica host parasite association: germination, attachment and early growth. New Phytol 124:681–687. doi: 10.1111/j.1469-8137.1993.tb03858.x CrossRefGoogle Scholar
  31. Chapin FS III, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175. doi: 10.2307/2937039 CrossRefGoogle Scholar
  32. Chapman RN (1931) Animal Ecology. McGraw-Hill, New YorkGoogle Scholar
  33. Chen H, Li B, Fang C, Chen J, Wu J (2007) Exotic plant influences soil nematode communities through litter input. Soil Biol Biochem 39:1782–1793. doi: 10.1016/j.soilbio.2007.02.011 CrossRefGoogle Scholar
  34. Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (S. lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190. doi: 10.1126/science.154.3753.1189 PubMedCrossRefGoogle Scholar
  35. Couto L, Betters DR (1995) Short rotation Eucalypt plantations in Brazil: social and environmental issues. OKA Ridge National laboratory, Tennessee, USAGoogle Scholar
  36. D’Antonio CM, Mahall BE (1991) Root profiles and competition between the invasive, exotic perennial, Carpobortus edulis, and two native shrub species in California coastal scrub. Am J Bot 78:885–894. doi: 10.2307/2445167 CrossRefGoogle Scholar
  37. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle and global change. Annu Rev Ecol Evol Syst 23:63–87Google Scholar
  38. D’Antonio C, Meyerson LA (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor Ecol 10:703–713. doi: 10.1046/j.1526-100X.2002.01051.x CrossRefGoogle Scholar
  39. D’Antonio CM, Dudley TL, Mack MC (1999) Disturbance and biological invasions: direct effects and feedbacks. In: Walker L (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 413–452Google Scholar
  40. Dadon T, Nun NB, Mayer RM (2004) A factor from Azospirillum brasilense inhibits germination and radicle growth of Orobanche aegyptiaca. Isr J Plant Sci 52:83–86. doi: 10.1560/Q3BA-8BJW-W7GH-XHPX CrossRefGoogle Scholar
  41. De Candolle AP (1832) Physiologie végétale. Bechet Jeune, ParisGoogle Scholar
  42. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. doi: 10.1080/713610853 CrossRefGoogle Scholar
  43. Dube MP, Olivier A (2001) Striga gesnerioides and its host, cowpea: interaction and methods of control. Can J Bot 79(10):1225–1240. doi: 10.1139/cjb-79-10-1225 CrossRefGoogle Scholar
  44. Duda JJ, Freeman DC, Emlen JM, Belnap J, Kitchen SG, Zak JC, Sobek E, Tracy M, Montante J (2003) Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biol Fertil Soils 38:72–77. doi: 10.1007/s00374-003-0638-x CrossRefGoogle Scholar
  45. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y, Print) 6:503–523. doi: 10.1007/s10021-002-0151-3
  46. Eom A, Hartnett DC (2000) Host plant species effects on arbuscular mycorhizal fungi communities in tallgrass prairie. Oecologia 122:435–444. doi: 10.1007/s004420050050 CrossRefGoogle Scholar
  47. Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in a arid grassland. Ecol Appl 11:1301–1310. doi: 10.1890/1051-0761(2001)011[1301:EPIAND]2.0.CO;2 CrossRefGoogle Scholar
  48. Farina MPW, Thomas PEL, Channon P (1985) Nitrogen, phosphorus and potassium effects on the incidence of Striga asiatica (L.) Kuntze in maize. Weed Res 25:443–447. doi: 10.1111/j.1365-3180.1985.tb00667.x CrossRefGoogle Scholar
  49. Fumanal B, Plenchette C, Chauvel B, Bretagnolle F (2006) Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza 17:25–35. doi: 10.1007/s00572-006-0078-1 PubMedCrossRefGoogle Scholar
  50. Gange AC (1994) Subterranean insects and fungi: hidden costs and benefits to the greenkeeper. Cochran AJ, Ferrally MR (Eds) Science and Golf II: Proccedings of the World Scientific Congress of Golf. E. and F.N. Spon, London, UK. pp 461–466Google Scholar
  51. Gange AC, Lindsay DE, Ellis LS (1999) Can arbuscular mycorrhizal fungi be used to control the undesirable grass Poa annua on golf courses? J Appl Ecol 36:909–919. doi: 10.1046/j.1365-2664.1999.00456.x CrossRefGoogle Scholar
  52. Grace JD, Tilman D (1990) Perspectives on plant competition. Academic, San DiegoGoogle Scholar
  53. Graham JH, Leonard RT, Menge JA (1981) Membrane mediated decrease of root-exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552. doi: 10.1104/pp.68.3.548 PubMedCrossRefGoogle Scholar
  54. Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56. doi: 10.1016/S0929-1393(96)00126-6 CrossRefGoogle Scholar
  55. Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33:533–551. doi: 10.1016/S0038-0717(00)00194-2 CrossRefGoogle Scholar
  56. Grubb P (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol Rev Camb Philos Soc 52:107–145. doi: 10.1111/j.1469-185X.1977.tb01347.x CrossRefGoogle Scholar
  57. Hamilton JG, Holzapfel C, Mahall BE (1999) Coexistence and interference between native perennial grass and non-native annual in California. Oecologia 121:518–526. doi: 10.1007/s004420050958 CrossRefGoogle Scholar
  58. Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808. doi: 10.1046/j.1351-0754.2003.0559.x CrossRefGoogle Scholar
  59. Hauck C, Müller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478Google Scholar
  60. Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39. doi: 10.1023/A:1026208327014 CrossRefGoogle Scholar
  61. Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Beruksichtigung der Grundungung und Brache (On recent insights and problems in the area of soil bacteriology under special consideration of the use of green manure and fallowing). Arb Dtsch Landwirt Ges 98:59–78Google Scholar
  62. Hirsch AM, Dietz Bauer W, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecolog 84:858–868. doi: 10.1890/0012-9658(2003)084[0858:MSARCR]2.0.CO;2 CrossRefGoogle Scholar
  63. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: Implications for conservation. Conserv Biol 6:324–337. doi: 10.1046/j.1523-1739.1992.06030324.x CrossRefGoogle Scholar
  64. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasions and community structure in Californian serpentine grassland. Ecology 71:478–491. doi: 10.2307/1940302 CrossRefGoogle Scholar
  65. Hughes RF, Vitousek PM (1993) Barriers to shrub re-establishment following fire in the seasonal submontane zone of Hawai. Oecologia 93:557–563. doi: 10.1007/BF00328965 CrossRefGoogle Scholar
  66. Hutchinson TF, Vankat JL (1997) Invasibility and effects of Amur honeysuckle in southwestern Ohio forest. Conserv Biol 11:1117–1124. doi: 10.1046/j.1523-1739.1997.96001.x CrossRefGoogle Scholar
  67. Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological control of annual bluegrass (Poa annua L.) with Japenese isolate of Xanthomonas campestris pv. poae (JT-P482). Biol Control 8:7–14. doi: 10.1006/bcon.1996.0475 CrossRefGoogle Scholar
  68. Imaizumi S, Teteno A, Fujimori T (1998) Effect of bacterial concentration of Xanthomonas campestris pv. poae (JT-P482) on the control of annual bluegrass (Poa annua L.). J Pest Sci 23:141–144Google Scholar
  69. Jacoud C (1997) Induction précoce de l’effet « PGPR » par Azospirillum lipoferum CRT1 chez le mais. Thèse pour l’obtention du diplôme de doctorat, UCB Lyon 1Google Scholar
  70. Joel DM, Steffens JC, Mathews DE (1995) Germination of weedy root parasites. Seed Development and Germination, InGoogle Scholar
  71. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13. doi: 10.1016/j.femsec.2003.11.012 CrossRefPubMedGoogle Scholar
  72. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515. doi: 10.1046/j.1469-8137.2003.00938.x CrossRefGoogle Scholar
  73. Khan ZR, Hassanali A, Overholt W, Khamis TM, Hooper AM, Pickett JA, Wadhams LJ, Woodcock CM (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J Chem Ecol 28:1871–1884. doi: 10.1023/A:1020525521180 PubMedCrossRefGoogle Scholar
  74. Kim D, Koiz R, Boone L, Keyes WJ, Lynn DG (1998) On becoming a parasite evaluating the role of wall oxidases in parasitic plant development. Chem Biol 5:103–117. doi: 10.1016/S1074-5521(98)90144-2 PubMedCrossRefGoogle Scholar
  75. Kisa M, Sanon A, Thioulouse J, Assigbetse K, Sylla S, Spichiger R, Dieng L, Berthelin J, Prin Y, Galiana A, Lepage M, Duponnois R (2007) Arbuscular mycorrhizal symbiosis counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a Sahelian soil. FEMS Microbiol Ecol 62:32–44. doi: 10.1111/j.1574-6941.2007.00363.x PubMedCrossRefGoogle Scholar
  76. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi: 10.1038/417067a PubMedCrossRefGoogle Scholar
  77. Kneebone WR, Kopec DM, Mancino CF (1992) Water requirements and irrigation. Waddington DV, Carrow RN, Shearman RC (eds) Turfgrass. American Society of Agronomy, Madison, MI, pp 441–472Google Scholar
  78. Knevel I, Lans T, Menting FBJ, Hertling UM, van der Putten WH (2004) Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa. Oecologia 141:502–510. doi: 10.1007/s00442-004-1662-8 PubMedCrossRefGoogle Scholar
  79. Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166Google Scholar
  80. Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905. doi: 10.1016/S0038-0717(03)00120-2 CrossRefGoogle Scholar
  81. Lenné J (2000) Pests and poverty: the continuing need for crop protection research. Outlook Agric 29:235–250Google Scholar
  82. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26. doi: 10.2307/3546992 CrossRefGoogle Scholar
  83. Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasion. P Roy B-Biol Sci 270:775–781CrossRefGoogle Scholar
  84. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi: 10.1111/j.1461-0248.2004.00657.x CrossRefGoogle Scholar
  85. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  86. Logan DC, Stewart GR (1991) Germination of the seeds of parasitic angiosperms. Seed Sci Res 2:179–190Google Scholar
  87. Losner-Goshen D, Portnoy VH, Mayer AM, Joel DM (1998) Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann Bot (Lond) 81:319–326. doi: 10.1006/anbo.1997.0563 CrossRefGoogle Scholar
  88. Lozon JD, MacIsaac HJ (1997) Biological invasions: are they dependent on disturbance? Environ Rev 5:131–144. doi: 10.1139/er-5-2-131 CrossRefGoogle Scholar
  89. Mahall BE, Callaway RM (1991) Root communication among desert shrubs. Proc Natl Acad Sci USA 88:874–876. doi: 10.1073/pnas.88.3.874 PubMedCrossRefGoogle Scholar
  90. Mahall BE, Callaway RM (1992) Root communications mechanisms and intracommunity distributions of two Mojave Desert Shrubs. Ecology 73:2145–2151. doi: 10.2307/1941462 CrossRefGoogle Scholar
  91. Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180–1186CrossRefGoogle Scholar
  92. Maron J, Connors P (1996) A native nitrogen fixing plant facilitates weed invasion. Oecologia 105:305–312. doi: 10.1007/BF00328732 CrossRefGoogle Scholar
  93. Maron JL, Vila M (2001) Do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:363–373. doi: 10.1034/j.1600-0706.2001.950301.x CrossRefGoogle Scholar
  94. Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36. doi: 10.1016/j.apsoil.2004.06.007 CrossRefGoogle Scholar
  95. Masters RA, Nissen SJ (1998) Revegetating leafy spurge (Euphorbia esula)-infested rangeland with native tallgrass. Weed Technol 12:381–390Google Scholar
  96. Meiners SJ (2007) Apparent competition: an impact of exotic shrub invasion on tree regeneration. Biol Invasions 9:849–855. doi: 10.1007/s10530-006-9086-5 CrossRefGoogle Scholar
  97. Miché L, Bouillant ML, Rohr R, Sallé G, Bally R (2000) Physiological and cytological studies on the inhibition of Striga seed germination by the plant growth promoting bacterium Azospirillum brasilense. Eur J Plant Pathol 106:347–351. doi: 10.1023/A:1008734609069 CrossRefGoogle Scholar
  98. Mitchell CE, Power AG (2003) Release of invasive plants from viral and fungal pathogens. Nature 421:625–627. doi: 10.1038/nature01317 PubMedCrossRefGoogle Scholar
  99. Moora M, Zobel M (1996) Effect of arbuscular mycorrhiza and inter- and intraspecific competition of two grassland species. Oecologia 108:79–84. doi: 10.1007/BF00333217 CrossRefGoogle Scholar
  100. Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90. doi: 10.1007/s11104-006-9091-6 CrossRefGoogle Scholar
  101. Musselman L (1987) Taxonomy of witchweeds. Parasitic Weeds in Agriculture Vol. 1Google Scholar
  102. Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658. doi: 10.1016/S0045-6535(99)00488-9 PubMedCrossRefGoogle Scholar
  103. Newsham KK, Fitter AH, Watkinson AR (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82:805–814. doi: 10.2307/2261445 CrossRefGoogle Scholar
  104. Nilsson MC (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphrodium. Oecologia 98:1–7. doi: 10.1007/BF00326083 CrossRefGoogle Scholar
  105. Noss R (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364. doi: 10.1111/j.1523-1739.1990.tb00309.x CrossRefGoogle Scholar
  106. Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of Bacterial Groups Preferentially Associated with Mycorrhizal Roots of Medicago truncatula. Appl Environ Microbiol 73:913–921. doi: 10.1128/AEM.02042-06 PubMedCrossRefGoogle Scholar
  107. Olivier A (1995) Le Striga, mauvaises herbes parasites des céréals africaines: biologie et méthode de lutte. Agronomie 15:517–525. doi: 10.1051/agro:19950901 CrossRefGoogle Scholar
  108. Parker C (1991) Protection of crops against parasitic weeds. Crop Prot 10:6–22. doi: 10.1016/0261-2194(91)90019-N CrossRefGoogle Scholar
  109. Parker C, Riches CR (1993) Orobanche species: the broomrape. In: Parker C, Riches CR (eds) Parasitic weeds of the world: biology and control. Wallingford, CAB International, pp 111–163Google Scholar
  110. Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedlings mortality in a temperate tree. Nature 440:278–281. doi: 10.1038/35005072 CrossRefGoogle Scholar
  111. Pageau K, Rousset A, Simier P, Delavault P, Zehhar N, Fer A (2000) Special features of mechanisms controlling germination and carbon and nitrogen metabolism in two parasitic angiosperms: Striga hermonthica and Orobanche ramosa. Comptes rendus de l’Academie d’Agriculture de France 86(8):69–84Google Scholar
  112. Pimentel DL, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–64. doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 CrossRefGoogle Scholar
  113. Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210. doi: 10.1111/j.1469-8137.2007.02151.x PubMedCrossRefGoogle Scholar
  114. Priha O, Grayston SJ, Pennanen T, Smolander A (1999) Microbial activities related to C and N cycling and microbial community structure in the rhizosphere of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil. FEMS Microbiol Ecol 30:187–199. doi: 10.1111/j.1574-6941.1999.tb00647.x PubMedCrossRefGoogle Scholar
  115. Raju PS, Osman MA, Soman P, Peacock JM (1990) Effects of N, P and K on Striga asiatica (L.) Kuntze seed germinatio and infestation of sorghum. Weed Res 30:139–144. doi: 10.1111/j.1365-3180.1990.tb01697.x CrossRefGoogle Scholar
  116. Reader RJ (1998) Relationship between species relative abundance and plant traits for an infertile habitat. Plant Ecol 134:43–51. doi: 10.1023/A:1009700100343 CrossRefGoogle Scholar
  117. Reever-Morghan K, Seastedt TR (1999) Effects of soil nitrogen reduction on nonnative plants in restored grasslands. Restor Ecol 7:51–55. doi: 10.1046/j.1526-100X.1999.07106.x CrossRefGoogle Scholar
  118. Reinhart KO, Packer A, van der Putten WH, Clay K (2003) Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett 6:1046–1050. doi: 10.1046/j.1461-0248.2003.00539.x CrossRefGoogle Scholar
  119. Renne IJ, Rios BG, Fehmi JS, Tracy BF (2004) Low allelopathic potential of an invasive forage grass on native grassland plant: a cause for encouragements? Basic Appl Ecol 5:261–269. doi: 10.1016/j.baae.2003.11.001 CrossRefGoogle Scholar
  120. Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the Southern Hemisphere-determinants of spread and invadability. J Biogeogr 21:511–527. doi: 10.2307/2845655 CrossRefGoogle Scholar
  121. Ricklefs RW (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111:376–381. doi: 10.1086/283169 CrossRefGoogle Scholar
  122. Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450. doi: 10.1007/s004420000533 CrossRefGoogle Scholar
  123. Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular Mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333. doi: 10.1023/A:1014483303813 CrossRefGoogle Scholar
  124. Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara and Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146–152. doi: 10.1674/0003-0031(2001)146[0146:EOGMAP]2.0.CO;2 CrossRefGoogle Scholar
  125. Salle G, Aber M (1986) Les phanérogames parasites : biologie et stratégies de lutte. Bull Soc Bot France. Lettre bot 3:235–263Google Scholar
  126. Sallé G, Raynal-Roques A (1989) Le Striga. Recherche 206:44–51Google Scholar
  127. Sato D, Awad AA, Takeuchi Y, Yoneyama K (2005) Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton. Biosci Biotechnol Biochem 69:98–102. doi: 10.1271/bbb.69.98 PubMedCrossRefGoogle Scholar
  128. Schreiner O, Reed HS (1908) The toxic action of certain organic plant constituents. Bot Gaz 34:73–102. doi: 10.1086/329469 CrossRefGoogle Scholar
  129. Shachar-Hill Y, Reffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15PubMedGoogle Scholar
  130. Shine C, Williams N, Gundling L (2000) A guide to designing legal and institutional frameworks on alien invasive species. Vol. 40. IUCN, SwitzerlandGoogle Scholar
  131. Simberloff D (1974) Equilibrium theory of island biogeography and ecology. Annu Rev Ecol Evol Syst 5:161–182CrossRefGoogle Scholar
  132. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown. Biol Invasions 1:21–32. doi: 10.1023/A:1010086329619 CrossRefGoogle Scholar
  133. Simberloff D (2003) Confronting introduced species: a form of xenophobia? Biol Invasions 5:179–192. doi: 10.1023/A:1026164419010 CrossRefGoogle Scholar
  134. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedling by disrupting belowground mutualisms. PLoS Biol 4:727–731. doi: 10.1371/journal.pbio.0040140 CrossRefGoogle Scholar
  135. Stotzky G (1997) Soil as an environment for microbial life. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Dekker, New York, pp 1–20Google Scholar
  136. Sugimoto Y, Ali MA, Yabuta S, Kinoshita H, Inanaga S, Itai A (2003) Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiol Plant 119:137–145. doi: 10.1034/j.1399-3054.2003.00162.x CrossRefGoogle Scholar
  137. Tardiff S, Stanford JA (1998) Grizzly bear digging: effects on subalpine meadow plants in relation to mineral nitrogen availability. Ecology 79:2219–2228Google Scholar
  138. Thébaud C, Simberloff D (2001) Are plants really larger in their introduced ranges? Am Midl Nat 157:231–236Google Scholar
  139. Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Plant growth regulators and amino acids released by Azospirillum sp in chemically defined media. Lett Appl Microbiol 37:174–178. doi: 10.1046/j.1472-765X.2003.01373.x PubMedCrossRefGoogle Scholar
  140. Tilman D (1982) Resource competition and community structure. Monographs in population biology, vol 17. Princeton University Press, PrincetonGoogle Scholar
  141. Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787PubMedGoogle Scholar
  142. Urcelay C, Diaz S (2003) The mycorrhizal dependence of surbordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecol Lett 6:388–391. doi: 10.1046/j.1461-0248.2003.00444.x CrossRefGoogle Scholar
  143. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. doi: 10.1038/23932 CrossRefGoogle Scholar
  144. van der Putten WH, Van Dijk C, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56. doi: 10.1038/362053a0 CrossRefGoogle Scholar
  145. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564. doi: 10.1046/j.1365-294X.2002.01538.x PubMedCrossRefGoogle Scholar
  146. Vaughn SF, Berhow MA (1999) Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J Chem Ecol 25:2495–2504. doi: 10.1023/A:1020874124645 CrossRefGoogle Scholar
  147. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16Google Scholar
  148. Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaii-plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265. doi: 10.2307/1942601 CrossRefGoogle Scholar
  149. Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM (2004) Biogeographical variation in community response to root allelochemistry: Novel weapons and exotic invasion. Ecol Lett 7:285–292. doi: 10.1111/j.1461-0248.2004.00576.x CrossRefGoogle Scholar
  150. Vurro M, Boari A, Pilgeram AL, Sands DC (2006) Exogenous acids inhibit seed germination and tubercle formation by Orobanche ramosa (boomrape): Potential application for management of parasitic weeds. Biol Control 36:258–265. doi: 10.1016/j.biocontrol.2005.09.017 CrossRefGoogle Scholar
  151. Wardle DA (2002) Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton, NJ, p 392Google Scholar
  152. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi: 10.1126/science.1094875 PubMedCrossRefGoogle Scholar
  153. West HM (1996) Influence or arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. J Ecol 84:429–438. doi: 10.2307/2261204 CrossRefGoogle Scholar
  154. Westover K, Kennedy A, Kelley S (1997) Patterns of rhizosphere microbial community structure associated with co-occurring plant species. J Ecol 85:863–873. doi: 10.2307/2960607 CrossRefGoogle Scholar
  155. Westwood JH, Foy CL (1999) Influence of nitrogen on germination and early development of boomrape (Orobanche sp.). Weed Sci 47:2–7Google Scholar
  156. Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Vekleij JAC, Zwanenburg B (1999) Dose-response of seeds of parasitic weeds and Orobanche towards the synthetic germination stimulants GR24 and Njimegen-1. J Agric Food Chem 47:1705–1710. doi: 10.1021/jf981006z PubMedCrossRefGoogle Scholar
  157. Wilcove DS, Rothstein D, Bubow J, Phillips A, Losos E (1998) Quantifying threats to imperilled species in the United states. Bioscience 48:607–615. doi: 10.2307/1313420 CrossRefGoogle Scholar
  158. Wilson SD, Gerry AK (1995) Strategies for mixed-grass prairie restoration: herbicide, tilling, and nirogen manipulation. Restor Ecol 3:290–298. doi: 10.1111/j.1526-100X.1995.tb00096.x CrossRefGoogle Scholar
  159. Wirsel SGR (2004) Homogenous stands of wetland grass harbour dicerse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138. doi: 10.1016/j.femsec.2004.01.006 CrossRefPubMedGoogle Scholar
  160. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487. doi: 10.1641/0006-3568(2005)055[0477:BNGSCA]2.0.CO;2 CrossRefGoogle Scholar
  161. Worsham AD (1987) Germination of witchweed seeds. In: Musselman LJ (ed) Parasitic Weeds in Agriculture Vol. 1: Striga. CRC, Boca Raton, Florida, pp 45–61Google Scholar
  162. Zabinski CA, Quinn L, Callaway RM (2002) Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Funct Ecol 16:758–765. doi: 10.1046/j.1365-2435.2002.00676.x CrossRefGoogle Scholar
  163. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 84:2042–2050. doi: 10.1890/02-0433 CrossRefGoogle Scholar
  164. Zehhar N, Ingouff M, Bouya D, Fer A (2002) Possible involvement of gibberellins and ethylene in Orobanche ramosa germination. Weed Res 42:464–469. doi: 10.1046/j.1365-3180.2002.00306.x CrossRefGoogle Scholar
  165. Zhou T, Neal JC (1995) Annual bluegrass (Poa annua) control with Xanthomonas campestris pv. poae in New York State. Weed Technol 9:173–177Google Scholar
  166. Zobel M, Moora M (1995) Interspecific competition and arbuscular mycorrhiza: importance for the coexistence of two calcareous grassland species. Folia Geobot 30:223–230. doi: 10.1007/BF02812100 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. Sanon
    • 1
    • 2
  • Z. N. Andrianjaka
    • 3
    • 4
  • Y. Prin
    • 5
  • R. Bally
    • 3
  • J. Thioulouse
    • 6
  • G. Comte
    • 4
  • R. Duponnois
    • 1
    • 7
  1. 1.IRD, Laboratoire Commun de Microbiologie IRD/ISRA/UCADCentre de Recherche de Bel AirDakarSénégal
  2. 2.Département de Biologie VégétaleUniversité Cheick Anta DiopDakarSénégal
  3. 3.Centre National de la Recherche Scientifiques (CNRS)Laboratoire d’Ecologie MicrobienneVilleurbanne CedexFrance
  4. 4.Centre d’Etude des Substances Naturelles (CESN)Laboratoire d’Ecologie MicrobienneVilleurbanne CedexFrance
  5. 5.CIRAD, UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)MontpellierFrance
  6. 6.Laboratoire de Biométrie et Biologie EvolutiveUniversité de Lyon, F-69000, Lyon ; Université Lyon 1 ; CNRS, UMR5558VilleurbanneFrance
  7. 7.IRD, UMR 113 CIRAD/INRA/IRD/SUP-AGRO/UM2Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM)MontpellierFrance

Personalised recommendations