Plant and Soil

, Volume 326, Issue 1–2, pp 243–259 | Cite as

Simulation of sugarcane residue decomposition and aboveground growth

  • M. V. GaldosEmail author
  • C. C. Cerri
  • C. E. P. Cerri
  • K. Paustian
  • R. Van Antwerpen
Regular Article


Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, Timbaúba and Pradópolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m−2. Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m−2. By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R 2  = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R 2  = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.


Modeling Sugarcane Litter CENTURY Carbon 



This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. The authors would like to thank Mark Easter, Steve Williams and Kendrick Killian of the Natural Resources Ecology Laboratory, Colorado State University, for the valuable help with using the CENTURY model. We are also grateful to Bonnie Ball-Coelho (Agriculture and Agri-Food Canada), Dinailson de Campos (Centro de Energia Nuclear na Agricultura), Robert Boddey and Alexandre Resende (Empresa Brasileira de Pesquisa Agropecuária), Carolyn Baker (South African Sugarcane Research Institute), Paulo Frassinete (Instituto Agronômico de Pernambuco) and Orivaldo Brunini (Centro Integrado de Informações Agrometeorológicas) for kindly providing data used in this study.


  1. Alvarez IA, Castro PRC (1999) Crescimento da parte aérea de cana crua e queimada. Sci Agr 56:1069–1079Google Scholar
  2. Ball-Coelho B, Sampaio EVSB, Tiessen H, Stewart JWB (1992) Root dynamics in plant and ratoon crops of sugarcane. Plant Soil 142:297–305. doi: 10.1007/BF00010975 CrossRefGoogle Scholar
  3. Ball-Coelho B, Tiessen H, Stewart JWB, Salcedo IH, Sampaio EVSB (1993) Residue management effects on sugarcane yield and soil properties in northeastern Brazil. Agron J 85:1004–1008Google Scholar
  4. Basanta MV, Dourado-Neto D, Reichardt K, Bacchi OOS, Oliveira JCM, Trivelin PCO, Timm LC, Tominaga TT, Correchel V, Cássaro FAM, Pires LF, Macedo LF (2003) Management effects on nitrogen recovery in a sugarcane crop grown in Brazil. Geoderma 116:235–248. doi: 10.1016/S0016-7061(03)00103-4 CrossRefGoogle Scholar
  5. Baver LD, Brodie H, Tanimoto T, Trouse AC (1962) New approaches to the study of cane root systems. Proc S Afr Sug Technol Ass 11:248–253Google Scholar
  6. Biggs IM, Stewart GR, Wilson JR, Critchley C (2002) 15N natural abundance studies in Australian commercial sugarcane. Plant Soil 238:21–30. doi: 10.1023/A:1014280420779 CrossRefGoogle Scholar
  7. Blackburn F (1984) Sugar-cane. Longman, New YorkGoogle Scholar
  8. Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to grasses and cereals. Aust J Plant Physiol 28:889–895Google Scholar
  9. Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149. doi: 10.1023/A:1024152126541 CrossRefGoogle Scholar
  10. Bortoletto Júnior MJ (2004) Características hidrogeoquímicas e processos erosivos mecânicos e químicos nas bacias de drenagem dos rios Tiete e Piracicaba. PhD Dissertation. Universidade de São Paulo, PiracicabaGoogle Scholar
  11. Bull TA, Glasziou KT (1975) Sugar cane In Evans LT (ed) Crop physiology. Cambridge University Press, Cambridge, pp 51–72Google Scholar
  12. Campos DC (2003) Potencialidade do sistema de colheita sem queima da cana-de-açúcar para o sequestro de carbono. Dissertation, University of São PauloGoogle Scholar
  13. Cerri CC, Bernoux M, Feller C, Campos DC, de Luca EF, Eschenbrenner V (2004) Canne à sucre et sequestration du carbone. Académie d’Agriculture de France, 15 ppGoogle Scholar
  14. Cerri CEP, Easter M, Paustian K, Killian K, Coleman K, Bernoux M, Falloon P, Powlson DS, Batjes NH, Milne E, Cerri CC (2007) Predicted soil organic carbon stocks and changes in the Brazilian Amazon between 2000 and 2030. Agric Ecosyst Environ 122:58–72. doi: 10.1016/j.agee.2007.01.008 CrossRefGoogle Scholar
  15. Clements HF, Shingeura H, Akamine EK (1952) Factors affecting the growth of sugar cane. University of Hawaii Agricultural Experiment Station, HonoluluGoogle Scholar
  16. Dahija R, Malik RS, Jhorar BS, Dahija JB (2001) Organic mulch decomposition kinetics in semiarid environment at bare and crop field conditions. Arid Land Res Manage 15:49–60Google Scholar
  17. De Resende AS, Xavier RP, de Oliveira OC, Urquiaga S, Alves BJR, Boddey RM (2006) Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stocks on a plantation in Pernambuco, N.E. Brazil. Plant Soil 281:339–351. doi: 10.1007/s11104-005-4640-y CrossRefGoogle Scholar
  18. de Silva ALC, de Costa WAJM (2004) Varietal variation in growth, physiology and yield of sugarcane under two contrasting water regimes. Trop Agric Res 16:1–12Google Scholar
  19. Dematte JAM, Gama MAP, Cooper M, Araujo JC, Nanni MR, Fiorio PR (2004) Effect of fermentation residue on the spectral reflectance properties of soils. Geoderma 120:187–200. doi: 10.1016/j.geoderma.2003.08.016 CrossRefGoogle Scholar
  20. Dobereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774. doi: 10.1016/S0038-0717(96)00226-X CrossRefGoogle Scholar
  21. Dourado Neto D, Timm LC, Oliveira JCM, Reichardt K, Bacchi OOS, Tominaga TT, Cassaro FAM (1999) State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Sci Agr 56:1215–1221Google Scholar
  22. Evans H (1938) Studies on the absorbing surface of sugar-cane root systems. I. Method of study with some preliminary results. Ann Bot (Lond) 2:159–182Google Scholar
  23. FAOSTAT (2008) FAO Statistical databases. Available at: Accessed 16 June 2008
  24. Findeling A, Garnier P, Coppens F, Lafolie F, Recous S (2007) Modelling water, carbon and nitrogen dynamics in soil covered with decomposing mulch. Eur J Soil Sci 58:196–206. doi: 10.1111/j.1365-2389.2006.00826.x CrossRefGoogle Scholar
  25. Furlani Neto VL, Fernandes J, Stolf R, Coletti JT (1984) Perdas no campo pelo sistema de corte mecanizado com canas inteiras amontoadas. Saccharum 33:30–33Google Scholar
  26. Galdos MV (2007) Dinâmica do carbono do solo no agrossistema cana-de-açúcar. PhD Dissertation. Universidade de São Paulo, PiracicabaGoogle Scholar
  27. Galdos MV, Cerri CC, Cerri CEP, Paustian K, Van Antwerpen R (2009) Simulation of soil carbon dynamics under sugarcane with the CENTURY model. Soil Sci Soc Amer J 73:802-811. doi: 10.2136/sssaj2007.0285 CrossRefGoogle Scholar
  28. Garnier P, Neel C, Aita C, Recous S, Lafolie F, Mary B (2003) Modelling carbon and nitrogen dynamics in a bare soil with and without straw incorporation. Eur J Soil Sci 54:555–568. doi: 10.1046/j.1365-2389.2003.00499.x CrossRefGoogle Scholar
  29. Gava GJC, Trivelin PCO, Vitti AC, Oliveira MW (2005) Urea and sugarcane straw nitrogen balance in a soil-sugarcane crop system. Pesquisa Agropecu Bras 40:689–695. doi: 10.1590/S0100-204X2005000700010 Google Scholar
  30. Glover J (1968) The behavior of the root system of sugar cane at and after harvest. Proc S Afr Sug Technol Ass 42:133–135Google Scholar
  31. Graham MH, Haynes RJ, Meyer JH (2002) Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Eur J Soil Sci 53:589–598. doi: 10.1046/j.1365-2389.2002.00472.x CrossRefGoogle Scholar
  32. Hardman JM, Tilley LGW, Glanville T (1985) Agronomic and economic aspects of various farming systems for sugar cane in the Bundaberg district. Proc Aus Soc Sug Technol 7:147–153Google Scholar
  33. Hoefsloot G, Termorshuizen AJ, Watt DA, Cramer MD (2005) Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant Soil 277:85–96. doi: 10.1007/s11104-005-2581-0 CrossRefGoogle Scholar
  34. Inman-Bamber NGA (1991) Growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance. S Afr J Plant Soil 8:93–99Google Scholar
  35. Jones M, Van den Berg M (2006) Modelling trash management and its impacts: Methodology. Proc S Afr Sug Technol Ass 80:190–194Google Scholar
  36. Keating BA, Robertson MJ, Muchow RC, Huth NI (1999) Modeling sugarcane production systems. I. Development and performance of the sugarcane module. Field Crops Res 61:253–271. doi: 10.1016/S0378-4290(98)00167-1 CrossRefGoogle Scholar
  37. Koffler NF, Lima JFWF, Lacerda MF, Santana JF, da Silva MA (1986) Caracterização edafo-climática das regiões canavieiras do Brasil–Pernambuco. Planalsucar, PiracicabaGoogle Scholar
  38. Leite LFC, Sa Mendonca E, Machado PLOA, Fernandes Filho EI, Neves JCL (2004) Simulating trends in soil organic carbon of an Acrisol under no-tillage and disc-plow systems using the Century model. Geoderma 120:283–295. doi: 10.1016/j.geoderma.2003.09.010 CrossRefGoogle Scholar
  39. Liu DL, Kingston G (1994) QCANE: A simulation model of sugarcane growth and sugar accumulation. In: Robertson MJ (ed) Research and modeling approaches to assess sugarcane production opportunities. University of Quensland, St. Lucia, pp 25–29Google Scholar
  40. Ma L, Ahuja LR, Shaffer MJ, Rojas KW, Peterson GA, Sherrod L (1999) Decomposition of surface crop residues in long-term studies of dryland agroecosystems. Agron J 91:401–409Google Scholar
  41. Maestre I (1985) Dinámica del crecimiento radical y producción de raíces finas en dos variedades de cana de azúcar PR 1028 y V 58-4. Licenciatura Thesis. Universidad Central de Venezuela, Escuela de Biologia, CaracasGoogle Scholar
  42. Meier EA, Thorburn PJ, Wegener MK, Basford KE (2006) The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of North Quensland. Nutr Cycl Agroecosyst 75:101–114. doi: 10.1007/s10705-006-9015-0 CrossRefGoogle Scholar
  43. Metherell AK, Harding LA, Cole CV, Parton WJ (1993) CENTURY: Soil organic matter model environment. Technical documentation agroecosystem version 4.0. GPSR Tech. Rep. 4. USDA-ARS, Fort Collins, COGoogle Scholar
  44. Muchow RC, Spillman MF, Wood AW, Thomas MR (1994) Radiation interception and biomass accumulation in a sugarcane crop grown under irrigated tropical conditions. Aust J Agric Res 45:37–49. doi: 10.1071/AR9940037 CrossRefGoogle Scholar
  45. Orlando Filho J, Silva LCF, Rodella AA (1991) Effects of filter cake applications on sugarcane yields in Brazil. Sugar J 54:22–24Google Scholar
  46. Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179Google Scholar
  47. Purchase BS (1980) Nitrogen fixation associated with sugarcane. Proc S Afr Sug Technol Ass 54:173–176Google Scholar
  48. Robertson F (2003) Sugarcane trash management: consequences for soil carbon and nitrogen. Final Report to the CRC for Sustainable Sugar Production of the project Nutrient Cycling in Relation to Trash Management. CRC for Sustainable Sugar Production, TownvilleGoogle Scholar
  49. Sampietro DA, Vattuone MA, Isla MI (2006) Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw. J Plant Physiol 163:837–846. doi: 10.1016/j.jplph.2005.08.002 CrossRefPubMedGoogle Scholar
  50. Singels A, Donaldson RA, Smit MA (2005) Improving biomass production and partitioning in sugarcane: theory and practice. Field Crops Res 92:291–303. doi: 10.1016/j.fcr.2005.01.022 CrossRefGoogle Scholar
  51. Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225. doi: 10.1016/S0016-7061(97)00087-6 CrossRefGoogle Scholar
  52. Smith DM, Inman-Bamber NG, Thorburn PJ (2005) Growth and function of the sugarcane root system. Field Crops Res 92:169–183. doi: 10.1016/j.fcr.2005.01.017 CrossRefGoogle Scholar
  53. Snyder JD, Trofymow JA (1984) A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Commun Soil Sci Plant Anal 15:587–597. doi: 10.1080/00103628409367499 CrossRefGoogle Scholar
  54. Spain AV, Hodgen MJ (1994) Changes in the decomposition of sugarcane harvest residues during the decomposition as a surface mulch. Biol Fertil Soils 17:225–231. doi: 10.1007/BF00336327 CrossRefGoogle Scholar
  55. Sparovek G, Schnug E (2001) Temporal erosion-induced soil degradation and yield loss. Soil Sci Soc Am J 65:1479–1486Google Scholar
  56. Stenger R, Priesack E, Barkle G, Sperr C (1999) Expert-N - A tool for simulating nitrogen and carbon dynamics in the soil-plant-atmosphere system. In: Tomer M, Robinson M, Gielen G (eds) Proceedings NZ Land Treatment Collective, New Plymouth, pp 19-28Google Scholar
  57. Stott DE, Stroo HF, Elliott LG, Papendick RI, Unger PW (1990) Wheat residue loss from fields under no-till management. Soil Sci Soc Am J 54:92–98Google Scholar
  58. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Blackwell, OxfordGoogle Scholar
  59. Thorburn PJ (2001). In: Rees R M, Ball B C, Campbell C D and Watson C A (eds), Sustainable Management of Soil Organic Matter, CAB International, Wallingford, UK. pp. 74-82Google Scholar
  60. Thorburn PJ, Probert ME, Robertson FA (2001) Modelling decomposition of sugar cane surface residues with APSIM-Residue. Field Crops Res 70:223–232. doi: 10.1016/S0378-4290(01)00141-1 CrossRefGoogle Scholar
  61. Thorburn PJ, Van Antwerpen R, Meyer JH, Bezuidenhout CN (2002) The impact of trash management on soil carbon and nitrogen: I Modelling long-term experimental results in the South African sugar industry. Proc S Afr Sug Technol Ass 76:260–268Google Scholar
  62. Thorburn PJ, Dart IK, Biggs IM, Baillie CP, Smith MA, Keating BA (2003) The fate of nitrogen applied to sugarcane b trickle irrigation. Irrig Sci 2003;22:201–209. doi: 10.1007/s00271-003-0086-2 CrossRefGoogle Scholar
  63. Tominaga TT, Cássaro FAM, Bacchi OOS, Reichardt K, Oliveira JCM, Timm LC (2002) Variability of soil water content and bulk density in a sugarcane field. Aust J Soil Res 40:604–614. doi: 10.1071/SR01020 CrossRefGoogle Scholar
  64. Urquiaga S, Boddey RM, Oliveira OC, Lima E, Guimaraes DHV (1991) A importância de não queimar a palha na cultura de cana-de-açúcar. Comunicado Técnico, EMBRAPAGoogle Scholar
  65. Vallis I, Parton WJ, Keating BA, Wood AW (1996) Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane. Soil Tillage Res 38:115–132. doi: 10.1016/0167-1987(96)01014-8 CrossRefGoogle Scholar
  66. Van Antwerpen R, Meyer JH, Turner PET (2001) The effects of cane trash on yield and nutrition from the 61 year old BT1 trial at Mount Edgecombe. Proc S Afr Sug Technol Ass 75:235–241Google Scholar
  67. Viator RP, Johnson RM, Grimm CC, Richard EP Jr (2006) Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron J 98:1526–1531. doi: 10.2134/agronj2006.0030 CrossRefGoogle Scholar
  68. Williams MR, Filoso S, Martinelli LA, Lara LB, Camargo PB (2001) Precipitation and river water chemistry of the Piracicaba River Basin, Southeast Brazil. J Environ Qual 30:967–981PubMedCrossRefGoogle Scholar
  69. Wood AW (1991) Management of crop residues following green harvesting of sugarcane in north Queensland. Soil Tillage Res 20:69–85. doi: 10.1016/0167-1987(91)90126-I CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. V. Galdos
    • 1
    Email author
  • C. C. Cerri
    • 2
  • C. E. P. Cerri
    • 1
  • K. Paustian
    • 3
  • R. Van Antwerpen
    • 4
  1. 1.Departamento de Ciência do Solo, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  2. 2.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  3. 3.Natural Resources Ecology LaboratoryColorado State UniversityFort CollinsUSA
  4. 4.South African Sugarcane Research InstituteMount EdgecombeSouth Africa

Personalised recommendations