Plant and Soil

, Volume 319, Issue 1–2, pp 235–246 | Cite as

Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots

  • Laëtitia Bréchet
  • Stéphane Ponton
  • Jacques Roy
  • Vincent Freycon
  • Marie-Madeleine Coûteaux
  • Damien Bonal
  • Daniel Epron
Regular Article


The high spatial variability of soil respiration in tropical rainforests is well evaluated, but influences of biotic factors are not clearly understood. This study underlines the influence of tree species characteristics on soil respiration across a 16-monospecific plot design in a tropical plantation of French Guiana. A large variability of soil CO2 fluxes was observed among plots (i.e. 2.8 to 6.8 μmol m−2 s−1) with the ranking being constant across seasons. There were no significant relationships between soil respiration and soil moisture or soil temperature, neither spatially, nor seasonally. The variability of soil respiration was mainly explained by quantitative factors such as leaf litterfall and basal area. Surprisingly, no significant relationship was observed between soil respiration and root biomass. However, the influence of substrate quality was revealed by a strong relationship between soil respiration and litterfall P (and litterfall N, to a lesser extent).


Fine root Litter quality Nutrient cycling Plant soil interactions Soil respiration Tropical plantations 



We thank CIRAD-Forêt for permission to conduct research in the Paracou plantations. This research was supported by a FNS program (ACI PNBC) from the French Ministry of Research. We are grateful to Jean-Yves Goret, Audin Patient and Cyril Douthe and all casual workers for assistance with the field measurements. We also thank J-Y. Goret for providing the meteorological data. Finally, we are grateful for the comments of two anonymous reviewers, which greatly improved the manuscript.


  1. Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H (2006) Differences in soil respiration between different tropical ecosystems. Appl Soil Ecol 34:258–265 doi: 10.1016/j.apsoil.2006.01.006 CrossRefGoogle Scholar
  2. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449 doi: 10.2307/3546886 CrossRefGoogle Scholar
  3. Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253 doi: 10.1051/forest:2002020 CrossRefGoogle Scholar
  4. Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy SC (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric For Meteorol 131:225–232 doi: 10.1016/j.agrformet.2005.06.004 CrossRefGoogle Scholar
  5. Bauhus J, Pare D, Cote L (1998) Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem 30:1077–1089 doi: 10.1016/S0038-0717(97)00213-7 CrossRefGoogle Scholar
  6. Betson NR, Göttlicher SG, Hall M, Wallin G, Högberg P (2007) No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest. Tree Physiol 27:749–756PubMedGoogle Scholar
  7. Bhupinderpal S, Nordgren A, Lofvenius MO, Hogberg MN, Mellander PE, Hogberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296 doi: 10.1046/j.1365-3040.2003.01053.x CrossRefGoogle Scholar
  8. Binkley D, Giardina CP (1998) Why do tree species affect soils? The warp and woof of tree–soil interactions. Biogeochemistry 42:86–106 doi: 10.1023/A:1005948126251 CrossRefGoogle Scholar
  9. Bonal D, Bosc A, Ponton S, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Longdoz B, Epron D, Guehl JM, Granier A (2008) Severe dry periods are associated with higher net ecosystem carbon storage in the Neotropical rainforest of French Guiana. Glob Chang Biol 14:1917–1933 doi: 10.1111/j.1365-2486.2008.01610.x CrossRefGoogle Scholar
  10. Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest. Can J For Res 23:1402–1407 doi: 10.1139/x93-177 CrossRefGoogle Scholar
  11. Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659 doi: 10.1007/s00442-006-0402-7 PubMedCrossRefGoogle Scholar
  12. Bruggemann N, Rosenkranz P, Papen H, Pilegaard K, Butterbach-Bahl K (2005) Pure stands of temperate forest tree species modify soil respiration and N turnover. Biogeosciences Discussions 2:303–331CrossRefGoogle Scholar
  13. Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448 doi: 10.1034/j.1600-0706.2002.970315.x CrossRefGoogle Scholar
  14. Cavelier J, Wright SJ, Santamaria J (1999) Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant Soil 211:207–213 doi: 10.1023/A:1004686204235 CrossRefGoogle Scholar
  15. Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araujo AC, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88 doi: 10.1890/01-6012 CrossRefGoogle Scholar
  16. Chung HG, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Chang Biol 13:980–989 doi: 10.1111/j.1365-2486.2007.01313.x CrossRefGoogle Scholar
  17. Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems (N Y, Print) 5:680–691Google Scholar
  18. Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66 doi: 10.1016/S0169-5347(00)88978-8 CrossRefGoogle Scholar
  19. Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69 doi: 10.1023/A:1006204113917 CrossRefGoogle Scholar
  20. Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Lawg BE, Luoh Y, Pregitzer K, Randolph JC, Zak D (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric For Meteorol 113:39–51 doi: 10.1016/S0168-1923(02)00101-6 CrossRefGoogle Scholar
  21. Eckstein RL, Karlsson PS, Weih M (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate–arctic regions. New Phytol 143:177–189 doi: 10.1046/j.1469-8137.1999.00429.x CrossRefGoogle Scholar
  22. Epron D, Farque L, Lucot E, Badot P-M (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann Sci For 56:289–295 doi: 10.1051/forest:19990403 CrossRefGoogle Scholar
  23. Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-André L, Joffre R, Jourdan C, Bonnefond JM, Berbigier P, Hamel O (2004) Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. For Ecol Manag 202:149–160 doi: 10.1016/j.foreco.2004.07.019 CrossRefGoogle Scholar
  24. Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical rainforest in French Guiana. J Trop Ecol 22:565–574 doi: 10.1017/S0266467406003415 CrossRefGoogle Scholar
  25. Gourlet-Fleury S, Ferry B, Molino JF, Petronelli P, Schmitt L (2004) Experimental plots: key features. In: Gourley-Fleury S, Guehl JM, Laroussinie O (eds) Ecology and management of a Neotropical rainforest. Elsevier, Paris, pp 3–30Google Scholar
  26. Gower ST (1987) Relation between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forest: a hypothesis. Biotropica 19:171–175 doi: 10.2307/2388741 CrossRefGoogle Scholar
  27. Grace J, Malhi Y, Higuchi N, Meir P (2001) Productivity and carbon fluxes of tropical rain forests. In: Mooney HA, Roy J, Saugier B (eds) Terrestrial global productivity: past, present, and future. Academic, London, pp 401–428Google Scholar
  28. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218 doi: 10.1146/annurev.ecolsys.36.112904.151932 CrossRefGoogle Scholar
  29. Hättenschwiler S, Aeschlimann B, Bonal B, Coûteaux MM, Roy J (2008) Variation in leaf litter quality among 45 neotropical rainforest tree species and its implications for nutrients recycling. New Phytol 179:165–175 doi: 10.1111/j.1469-8137.2008.02438.x PubMedCrossRefGoogle Scholar
  30. Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339 doi: 10.1016/0169-5347(92)90126-V CrossRefGoogle Scholar
  31. Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, De Camargo PB, Wofsy SC (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res 112:G03008 doi: 10.1029/2006JG000365 CrossRefGoogle Scholar
  32. IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 ppGoogle Scholar
  33. IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World Soil Resources Reports 103, FAO, Rome, 128ppGoogle Scholar
  34. Joffre R, Gillon D, Dardenne P, Agneessens R, Biston R (1992) The use of near-infrared reflectance spectroscopy in litter decomposition studies. Ann Sci For 49:481–488 doi: 10.1051/forest:19920504 CrossRefGoogle Scholar
  35. Jonard M, Andre F, Jonard F, Mouton N, Proces P, Ponette Q (2007) Soil carbon dioxide efflux in pure and mixed stands of oak and beech. Ann Sci For 64:141–150 doi: 10.1051/forest:2006098 CrossRefGoogle Scholar
  36. Kuzyakov Y, Hill PW, Jones DL (2007) Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305 doi: 10.1007/s11104-006-9162-8 CrossRefGoogle Scholar
  37. Le Dantec V, Epron D, Dufrêne E (1999) Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil 214:125–132 doi: 10.1023/A:1004737909168 CrossRefGoogle Scholar
  38. Metson AJ (1956) Methods of chemical analysis for soil survey samples. DSIR, WellingtonGoogle Scholar
  39. Nakane K, Kohno T, Horikoshi T (1996) Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest. Ecol Res 11:111–119 doi: 10.1007/BF02347678 CrossRefGoogle Scholar
  40. Ngao J, Longdoz B, Perrin D, Vincent G, Epron D, Le Dantec V, Soudani K, Aubinet M, Willm F, Granier A (2006) Cross-calibration functions for soil CO2 efflux measurement systems. Ann For Sci 63:477–484 doi: 10.1051/forest:2006028 CrossRefGoogle Scholar
  41. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In USDA Circular 939. US Government Print Office, Washington, DC, pp 1–19Google Scholar
  42. Phillips OL, Hall P, Gentry AH, Sawyer SA, Vasquez R (1994) Dynamics and species richness of tropical rain-forests. Proc Natl Acad Sci USA 91:2805–2809 doi: 10.1073/pnas.91.7.2805 PubMedCrossRefGoogle Scholar
  43. Pinay G, Barbera P, Carreras-Palou A, Fromin N, Sonie L, Coûteaux MM, Roy J, Philippot L, Lensi R (2007) Impact of atmospheric CO2 and plant life forms on soil microbial activities. Soil Biol Biochem 39:33–42 doi: 10.1016/j.soilbio.2006.05.018 CrossRefGoogle Scholar
  44. Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200PubMedGoogle Scholar
  45. Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinisto S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grunzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Ostreng G, Ziegler W, Anthoni P, Lindroth A, Hari P (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–176 doi: 10.1016/j.agrformet.2003.12.001 CrossRefGoogle Scholar
  46. Raich JW, Schlesinger WH (1992) The global carbon dioxyde flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99Google Scholar
  47. Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF (2007) Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–1397 doi: 10.2136/sssaj2006.0069 CrossRefGoogle Scholar
  48. Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manag 205:199–214 doi: 10.1016/j.foreco.2004.10.006 CrossRefGoogle Scholar
  49. Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Hammond Pyle E, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557 doi: 10.1126/science.1091165 PubMedCrossRefGoogle Scholar
  50. Saleska SR, Didan K, Huete AR, da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318:612–612 doi: 10.1126/science.1146663 PubMedCrossRefGoogle Scholar
  51. Schwendenmann L, Veldkamp E, Brenes T, O’Brien JJ, Mackensen J (2003) Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64:111–128 doi: 10.1023/A:1024941614919 CrossRefGoogle Scholar
  52. Soe ARB, Buchmann N (2005) Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol 25:1427–1436PubMedGoogle Scholar
  53. Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Glob Chang Biol 10:601–617 doi: 10.1111/j.1529-8817.2003.00761.x CrossRefGoogle Scholar
  54. Spehn EM, Joshi J, Schmid B, Alphei J, Körner C (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230 doi: 10.1023/A:1004891807664 CrossRefGoogle Scholar
  55. Stoyan H, De-Polli H, Böhm S, Robertson GP, Paul EA (2000) Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil 222:303–214 doi: 10.1023/A:1004757405147 CrossRefGoogle Scholar
  56. Ter Steege H, Sabatier D, Castellanos H, Van Andel T, Duivenvoorden J, De Oliveira AA, Ek R, Lilwah R, Maas P, Mori S (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana shield. J Trop Ecol 16:801–828 doi: 10.1017/S0266467400001735 CrossRefGoogle Scholar
  57. Valverde-Barrantes OJ (2007) Relationships among litterfall, fine-root growth, and soil respiration for five tropical tree species. Can J For Res 37:1954–1965 doi: 10.1139/X07-057 CrossRefGoogle Scholar
  58. Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167 doi: 10.1146/ CrossRefGoogle Scholar
  59. Wright S (1934) The method of path coefficients. Ann Math Stat 5:161–215 doi: 10.1214/aoms/1177732676 CrossRefGoogle Scholar
  60. Xu XN, Hirata EJ (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273:279–289 doi: 10.1007/s11104-004-8069-5 CrossRefGoogle Scholar
  61. Xu XK, Inubushi K, Sakamoto K (2006) Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 136:310–319 doi: 10.1016/j.geoderma.2006.03.045 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Laëtitia Bréchet
    • 1
  • Stéphane Ponton
    • 1
    • 5
  • Jacques Roy
    • 2
  • Vincent Freycon
    • 1
    • 3
  • Marie-Madeleine Coûteaux
    • 2
  • Damien Bonal
    • 1
  • Daniel Epron
    • 4
  1. 1.INRA, UMR Ecologie des Forêts de GuyaneCampus AgronomiqueKourou CedexFrance
  2. 2.CNRSUMR Centre d’Ecologie Fonctionnelle et EvolutiveMontpellier Cedex 5France
  3. 3.CIRAD, UPR Dynamique des Forêts NaturellesCampus International de BaillarguetMontpellier Cedex 5France
  4. 4.Université Henri Poincaré Nancy 1, UMR Ecologie et Ecophysiologie ForestièreVandoeuvre-les-Nancy CedexFrance
  5. 5.Forest Ecology and Ecophysiology Unit—UMR EEFNational Institute for Agricultural Research (INRA)—Centre de Recherche de NancyChampenouxFrance

Personalised recommendations