Plant and Soil

, Volume 324, Issue 1–2, pp 157–168 | Cite as

Applying lessons from ecological succession to the restoration of landslides

  • Lawrence R. Walker
  • Eduardo Velázquez
  • Aaron B. Shiels
Regular Article


Landslides are excellent illustrations of the dynamic interplay of disturbance and succession. Restoration is difficult on landslide surfaces because of the high degree of spatial and temporal heterogeneity in soil stability and fertility. Principles derived from more than a century of study of ecological succession can guide efforts to reduce chronic surface soil erosion and restore both biodiversity and ecosystem function. Promotion of the recovery of self-sustaining communities on landslides is feasible by stabilization with native ground cover, applications of nutrient amendments, facilitation of dispersal to overcome establishment bottlenecks, emphasis on functionally redundant species and promotion of connectivity with the adjacent landscape. Arrested succession through resource dominance by a single species can be beneficial if that species also reduces persistent erosion, yet the tradeoff is often reduced biodiversity. Restoration efforts can be streamlined by using techniques that promote successional processes.


Competitive inhibition Dispersal Erosion Facilitation Primary succession Soil fertility 



Lawrence Walker and Eduardo Velázquez were supported by grant DEB-0620910 from the U.S. National Science Foundation as part of the LTER program in Puerto Rico. We thank Roy Sidle and one anonymous reviewer for helpful comments on the manuscript.


  1. Aronson J, Florest C, LeFloc’h E, Ovalle C, Pontanier R (1993) Restoration and rehabilitation of degraded ecosystems in arid and semiarid regions. 1. A view from the South. Rest Ecol 1:8–17CrossRefGoogle Scholar
  2. Arunachalam A, Upadhyaya K (2005) Microbial biomass during revegetation of landslides in the humid tropics. J Trop For Sci 17:306–311Google Scholar
  3. Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, OxfordGoogle Scholar
  4. Bardgett RD, Bowman WD, Kaufman R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641 doi: 10.1016/j.tree.2005.08.005 CrossRefPubMedGoogle Scholar
  5. Bellingham PJ, Walker LR, Wardle DA (2001) Differential facilitation by a nitrogen-fixing shrub during primary succession influences relative performance of canopy tree species. J Ecol 89:861–875 doi: 10.1046/j.0022-0477.2001.00604.x CrossRefGoogle Scholar
  6. Chou WC, Lin WT, Lin CY (2007) Application of fuzzy set theory and PROMETHEE technique to evaluate suitable ecotechnology method: A case study in Shihmen Reservoir Watershed, Taiwan. Ecol Eng 31:269–280 doi: 10.1016/j.ecoleng.2007.08.004 CrossRefGoogle Scholar
  7. Clements FE (1928) Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington, Washington, D.C.Google Scholar
  8. Collins SL, Glenn SM, Roberts DW (1993) The hierarchical continuum concept. J Veg Sci 4:149–156 doi: 10.2307/3236099 CrossRefGoogle Scholar
  9. Conforth DH (2005) Landslides in practice: investigations, analysis and remedial/preventive options in soils. Wiley, HobokenGoogle Scholar
  10. Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Shuster RL (eds) Landslides: Investigation and mitigation. National Academy of Sciences, Washington, DC, pp 36–71Google Scholar
  11. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87 doi: 10.1016/S0013-7952(01)00093-X CrossRefGoogle Scholar
  12. Dale VH, Joyce LA, McNulty S, Neilson RP (2000) The interplay between climate change, forests and disturbances. Sci Total Environ 262:201–204 doi: 10.1016/S0048-9697(00)00522-2 CrossRefPubMedGoogle Scholar
  13. Dalling JW (1994) Vegetation colonization of landslides in the Blue Mountains, Jamaica. Biotropica 26:392–399 doi: 10.2307/2389233 CrossRefGoogle Scholar
  14. Davis TJ, Klinkenberg B, Keller CP (2004) Evaluating restoration success on Lyell Island, British Columbia using oblique videogrammetry. Restor Ecol 12:447–455 doi: 10.1111/j.1061-2971.2004.012316.x CrossRefGoogle Scholar
  15. del Moral R, Walker LR, Bakker JP (2007) Insights gained from succession for the restoration of landscape structure and function. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and succession. Springer, New York, pp 19–44CrossRefGoogle Scholar
  16. Densmore RV (1992) Succession on an Alaskan tundra disturbance with and without assisted revegetation with grass. Arct Alp Res 26:354–363 doi: 10.2307/1551797 CrossRefGoogle Scholar
  17. Díaz S, Cabido M, Casanoves F (1999) Functional implications of trait-environmental linkages in plant communities. In: Weiher E, Keddy P (eds) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 338–362Google Scholar
  18. Drury WH, Nisbet ICT (1973) Succession. J Arnold Arbor 54:331–368Google Scholar
  19. Fastie CL (1995) Causes and ecosystem consequences of multiple pathways on primary succession at Glacier Bay, Alaska. Ecology 76:1899–1916 doi: 10.2307/1940722 CrossRefGoogle Scholar
  20. Fernández DS, Myster RW (1995) Temporal variation and frequency distribution of photosynthetic photon flux densities on landslides in Puerto Rico. Trop Ecol 36:73–87Google Scholar
  21. Fetcher N, Haines BL, Cordero RA, Lodge DJ, Walker LR, Fernández DS, Lawrence WT (1996) Responses of tropical plants to nutrients and light on a landslide in Puerto Rico. J Ecol 84:331–341 doi: 10.2307/2261196 CrossRefGoogle Scholar
  22. Francescato V, Scotton M, Zarin DJ, Innes JC, Bryant DM (2001) Fifty years of natural revegetation on a landslide in Franconia Notch, New Hampshire, USA. Can J Bot 79:1477–1485 doi: 10.1139/cjb-79-12-1477 CrossRefGoogle Scholar
  23. Fukami T, Bezemer TM, Mortimer SR, van der Putter W (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290 doi: 10.1111/j.1461-0248.2005.00829.x CrossRefGoogle Scholar
  24. Garwood NC (1985) Earthquake-caused landslides in Panama: recovery of the vegetation. Natl Geogr Soc Res Rep 21:181–184Google Scholar
  25. Garwood NC, Janos DP, Brokaw N (1979) Earthquake-caused landslides: a major disturbance to tropical forests. Science 205:997–999 doi: 10.1126/science.205.4410.997 CrossRefPubMedGoogle Scholar
  26. Gleason HA (1939) The individualistic concept of the plant association. Am Midl Nat 21:92–110 doi: 10.2307/2420377 CrossRefGoogle Scholar
  27. Glenn-Lewin DC (1980) The individualistic nature of plant community development. Vegetatio 43:141–146 doi: 10.1007/BF00121026 CrossRefGoogle Scholar
  28. Glenn-Lewin DC, Peet RK, Veblen TT (eds) (1992) Plant succession: theory and prediction. Chapman and Hall, London p 352Google Scholar
  29. Guariguata MR (1990) Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. J Ecol 78:814–832 doi: 10.2307/2260901 CrossRefGoogle Scholar
  30. Guariguata MR, Larsen MC (1993) Preliminary map showing locations of landslides in El Yunque Quadrangle, Puerto Rico. U.S. Geol. Survey Open-File Report 89–257Google Scholar
  31. Hobbs RJ (1999) Restoration of disturbed ecosystems. In: Walker LR (ed) Ecosystems of disturbed ground, ecosystems of the world Vol. 16. Elsevier, Amsterdam, pp 673–687Google Scholar
  32. Hobbs RJ, Suding KN (eds) (2008) New models for ecosystem dynamics and restoration. Island, p 512Google Scholar
  33. Hobbs RJ Walker LR, Walker J (2007) Integrating restoration and succession. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 168–179CrossRefGoogle Scholar
  34. Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:1–13 doi: 10.1111/j.1461-0248.2008.01211.x CrossRefGoogle Scholar
  35. Langenheim JH (1956) Plant succession on a sub-alpine earthflow in Colorado. Ecology 37:301–317 doi: 10.2307/1933141 CrossRefGoogle Scholar
  36. Larsen MC (1995) How wide is a road? The association of roads and mast wasting in a forested montane environment, Puerto Rico. Am Geophys Unon Trans EOS Supplement 76:S309Google Scholar
  37. Larsen MC, Torres-Sánchez AJ (1992) Landslides triggered by Hurricane Hugo in eastern Puerto Rico, September 1989. Caribb J Sci 28:113–120Google Scholar
  38. Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr Ann 75A:13–23 doi: 10.2307/521049 CrossRefGoogle Scholar
  39. Lundgren L (1978) Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, Western Ulugura Mountains, Tanzania. Geogr Ann 60A:91–127 doi: 10.2307/520435 CrossRefGoogle Scholar
  40. Maheswaran J, Gunatilleke IAUN (1988) Litter decomposition in a lowland rain forest and a deforested area in Sri Lanka. Biotropica 20:90–99 doi: 10.2307/2388180 CrossRefGoogle Scholar
  41. Mark AF, Scott GAM, Sanderson FR, James PW (1964) Changes in the landslide vegetation at Lake Thomson, Fjordland. NZ J Bot 2:60–89Google Scholar
  42. Martin Y, Rood K, Schwab JW, Church M (2002) Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Can J Earth Sci 39:189–205 doi: 10.1139/e01-068 CrossRefGoogle Scholar
  43. McDowell WH, Gines-Sanchez C, Asbury CE, Ramos-Perez CR (1990) Influence of sea salt aerosols and long-range transport on precipitation chemistry at El Verde, Puerto Rico. Atmos Environ 24A:2813–2821Google Scholar
  44. McDowell WH, Bowden WB, Asbury CE (1992) Riparian nitrogen dynamics in two geomorphologically distinct tropical rain forest watersheds: subsurface solute dynamics. Biogeochemistry 18:53–75 doi: 10.1007/BF00002703 CrossRefGoogle Scholar
  45. McIntosh RP (1985) The background of ecology. Cambridge University Press, Cambridge, p 383Google Scholar
  46. McIntosh RP (1999) The succession of succession: a lexical chronology. Bull Ecol Soc Am 80:256–265Google Scholar
  47. Melick DR, Ashton DH (1991) The effects of natural disturbances on warm temperate rainforest in southeastern Australia. Aust J Bot 39:1–3 doi: 10.1071/BT9910001 CrossRefGoogle Scholar
  48. Miles DWR, Swanson FJ (1986) Vegetation composition on recent landslides in the Cascade Mountains of western Oregon. Can J For Res 16:739–744 doi: 10.1139/x86-132 CrossRefGoogle Scholar
  49. Miles DWR, Swanson FJ, Youngberg CT (1984) Effects of landslide erosion on subsequent Douglas-fir growth and stocking levels in the Western Cascades, Oregon. Soil Sci Soc Am J 48:667–671CrossRefGoogle Scholar
  50. Morgan RPC (2007) Vegetative-based technologies for erosion control. In: Stokes A, Spanos I, Norris JE (eds) Eco- and ground bio-engineering: The use of vegetation to improve slope stability. Springer, New York, pp 265–272CrossRefGoogle Scholar
  51. Myster RW (1993) Spatial heterogeneity of seed rain, seed pool, and vegetative cover on two Monteverde landslides, Costa Rica. Brenesia 39–40:137–145Google Scholar
  52. Myster RW (2001) Mechanisms of plant response to gradients and after disturbances. Bot Rev 64:441–452 doi: 10.1007/BF02857892 CrossRefGoogle Scholar
  53. Myster RW, Fernández DS (1995) Spatial gradients and patch structure on two Puerto Rican landslides. Biotropica 27:149–159 doi: 10.2307/2388990 CrossRefGoogle Scholar
  54. Myster RW, Walker LR (1997) Plant successional pathways on Puerto Rican landslides. J Trop Ecol 13:165–173CrossRefGoogle Scholar
  55. Myster RW, Sarmiento FO (1998) Seed inputs to microsite patch recovery on two tropandean landslides in Ecuador. Restor Ecol 6:35–43 doi: 10.1046/j.1526-100x.1998.00615.x CrossRefGoogle Scholar
  56. Nakamura T (1984) Vegetational recovery of landslide scars in the upper reaches of the Oi River, Central Japan. J. Jap. For. Soc. 66:328–332Google Scholar
  57. Negishi JN, Sidle RC, Noguchi S, Abdul Rahim N, Stanforth R (2006) Ecological roles of roadside fern (Dicranopteris curranii) on logging road recovery in Peninsular Malaysia: Preliminary results. For Ecol Manag 224:176–186CrossRefGoogle Scholar
  58. Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant-communities subject to recurrent disturbances. Vegetatio 43:5–21 doi: 10.1007/BF00121013 CrossRefGoogle Scholar
  59. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270 doi: 10.1126/science.164.3877.262 CrossRefPubMedGoogle Scholar
  60. Pandey AN, Singh JS (1985) Mechanisms of ecosystem recovery: a case study from Kumaun, Himalaya. Recreat Revegetation Res 3:271–292Google Scholar
  61. Paolini L, Grings F, Sobrino JA, Jiménez Muñoz JC, Karszenbaum H (2006) Radiometric corrections effects in Landsat multi-date/multi-sensor change detection studies. Int J Remote Sens 27:685–704 doi: 10.1080/01431160500183057 CrossRefGoogle Scholar
  62. Pederson N, Everham E, Sahm JM (1991) Natural disturbance simulation for the Luquillo Experimental Forest, Puerto Rico. In: McLeod J (ed) Toward understanding our environment. The society for computer simulation, San Diego, pp 95–100Google Scholar
  63. Pickett STA (1989) Space-for-time substitutions as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 110–135Google Scholar
  64. Pickett STA, White TS (1985) The ecology of natural disturbance and patch dynamics. Academic, New York, p 472Google Scholar
  65. Pickett STA, Ostfeld RS (1995) The shifting paradigm in ecology. In: Knight RL, Bates SF (eds) A new century for natural resources management. Island, Washington, DC, pp 261–278Google Scholar
  66. Restrepo C, Álvarez N (2006) Landslides and their contribution to land cover in the mountain of Mexico and Central America. Biotropica 38:446–457 doi: 10.1111/j.1744-7429.2006.00178.x CrossRefGoogle Scholar
  67. Restrepo C, Vitousek P, Neville P (2003) Landslides significantly alter land cover and the distribution of biomass: an example from the Ninole ridges of Hawai’i. Plant Ecol 166:131–143 doi: 10.1023/A:1023225419111 CrossRefGoogle Scholar
  68. Russell AE, Raich JW, Vitousek PM (1998) The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawaii, USA. J Ecol 86:765–779 doi: 10.1046/j.1365-2745.1998.8650765.x CrossRefGoogle Scholar
  69. Scatena F, Lugo AE (1995) Geomorphology, disturbance and soil vegetation of two subtropical wet steepland watersheds of Puerto Rico. Geomorph 13:199–213 doi: 10.1016/0169-555X(95)00021-V CrossRefGoogle Scholar
  70. Senneset K (ed) (1996) Landslides. Proceedings of the Seventh International Symposium on Landslides, 17–21 June 1996. Trondheim, Norway, Vol 3. A.A. Balkema, Rotterdam, The Netherlands, pp 1489–1992Google Scholar
  71. Shiels AB, Walker LR (2003) Bird perches increase forest seeds on Puerto Rican landslides. Restor Ecol 11:457–465 doi: 10.1046/j.1526-100X.2003.rec0269.x CrossRefGoogle Scholar
  72. Shiels AB, Walker LR, Thompson DB (2006) Organic matter inputs create variable resource patches on Puerto Rican landslides. Plant Ecol 184:223–236 doi: 10.1007/s11258-005-9067-2 CrossRefGoogle Scholar
  73. Shiels AB, West CA, Weiss L, Klawinski PD, Walker LR (2008) Soil factors predict initial plant colonization on Puerto Rican landslides. Plant Ecol 195:165–178 doi: 10.1007/s11258-007-9313-x CrossRefGoogle Scholar
  74. Sidle RC, Ochiai H (2006) Landslide processes, predictions and land use, American Geographical Union. Water Resour Monogr 18:312Google Scholar
  75. Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochem Cycles 12:231–257 doi: 10.1029/98GB00741 CrossRefGoogle Scholar
  76. Stern M (1995) Vegetative recovery on earthquake triggered landslide sites in the Ecuadorian Andes. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, Bronx, pp 207–220Google Scholar
  77. Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53 doi: 10.1016/j.tree.2003.10.005 CrossRefPubMedGoogle Scholar
  78. Tang SM, Franklin JF, Montgomery DR (1997) Forest harvest patterns and landscape disturbance processes. Landscape Ecol 12:349–363 doi: 10.1023/A:1007929523070 CrossRefGoogle Scholar
  79. Thompson JN, Reichman OJ, Morin PJ, Polis GA, Power ME, Sterner RW, Couch CA, Gough L, Holt R, Hooper DU, Keesing F, Lovell CR, Milne BT, Molles MC, Roberts DW, Strauss SY (2001) Frontiers of ecology. Bioscience 51:15–24 doi: 10.1641/0006-3568(2001)051[0015:FOE]2.0.CO;2 CrossRefGoogle Scholar
  80. van der Valk A (1992) Establishment, colonization and persistence. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession: Theory and prediction. Chapman and Hall, New York, pp 60–102Google Scholar
  81. Varnes DJ (1978) Slope movement, types and processes: Landslides, analysis and control. In: Schuser RL, Krizek RS (eds) Special Report 176. United States National Academy of Sciences Transportation Research Board, Washington D.C., pp 11–33Google Scholar
  82. Veblen TT, Ashton DH, Schlegel FM, Veblen AT (1977) Plant succession in a timberline depressed by vulcanism in south-central Chile. J Biogeogr 4:275–294 doi: 10.2307/3038061 CrossRefGoogle Scholar
  83. Veblen TT, Kitzberger T, Lara A (1992) Disturbance and forest dynamics along a transect from Andean rainforest to Patagonian shrubland. J Veg Sci 3:507–520 doi: 10.2307/3235807 CrossRefGoogle Scholar
  84. Velázquez E (2007) Sucesión ecológica temprana en un deslizamiento de ladera de grandes dimensiones en ambiente tropical seco, Volcán Casita, Nicaragua. Dissertation, Universidad de Alcalá, Alcalá de Henares, Spain, p 187Google Scholar
  85. Velázquez E, Gómez-Sal A (2007) Environmental control of early succession on a large landslide in a tropical dry ecosystem. Biotropica 39:601–609 doi: 10.1111/j.1744-7429.2007.00306.x CrossRefGoogle Scholar
  86. Velázquez E, Gómez-Sal A (2008) Landslide early succession in a Neotropical dry forest. Plant Ecol 199:295–308 doi: 10.1007/s11258-008-9433-y CrossRefGoogle Scholar
  87. Walker LR (1994) Effects of fern thickets on woodland development on landslides in Puerto Rico. J Veg Sci 5:525–532 doi: 10.2307/3235979 CrossRefGoogle Scholar
  88. Walker LR, Neris LW (1993) Posthurricane seed rain dynamics in Puerto Rico. Biotropica 25:408–418 doi: 10.2307/2388864 CrossRefGoogle Scholar
  89. Walker LR, Boneta W (1995) Plant and soil responses to fire on a fern-covered landslide in Puerto Rico. J Trop Ecol 11:473–479CrossRefGoogle Scholar
  90. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge, p 442Google Scholar
  91. Walker LR, Shiels AB (2008) Post-disturbance erosion impacts carbon fluxes and plant succession on recent tropical landslides. Plant Soil 313:205–216aCrossRefGoogle Scholar
  92. Walker LR, del Moral R (2008) Transition dynamics in succession: implications for rates, trajectories and restoration. In: Hobbs RJ, Suding K (eds) New models for ecosystem dynamics and restoration. Island, Washington, pp 38–49Google Scholar
  93. Walker LR, del Moral R (2009) Lessons from primary succession for restoration of severely damaged habitats. Appl Veg Sci (in press)Google Scholar
  94. Walker LR, Zarin DJ, Fetcher N, Myster RW, Johnson AH (1996) Ecosystem development and plant succession on landslides in the Caribbean. Biotropica 28:566–576 doi: 10.2307/2389097 CrossRefGoogle Scholar
  95. Walker LR, Bellingham PJ, Peltzer DA (2006) Plant characteristics are poor predictors of microsite colonization during the first two years of primary succession. J Veg Sci 17:397–406 doi: 10.1658/1100-9233(2006)017[0397:PCAPPO]2.0.CO;2 CrossRefGoogle Scholar
  96. Walker LR, Walker J, del Moral R (2007) Forging a new alliance between succession and restoration. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 1–18CrossRefGoogle Scholar
  97. Whisenant SG (1999) Repairing damaged wildlands: a process-orientated, landscape-scale approach. Cambridge University Press, Cambridge, p 324Google Scholar
  98. Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466 doi: 10.1086/419172 CrossRefGoogle Scholar
  99. Wunderle JM Jr, Díaz A, Velásquez I, Scharron R (1987) Forest openings and the distribution of understory birds in a Puerto Rican rainforest. Wilson Bull 99:22–37Google Scholar
  100. Zarin DJ, Johnson AH (1995a) Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico. Geoderma 65:317–330 doi: 10.1016/0016-7061(94)00048-F CrossRefGoogle Scholar
  101. Zarin DJ, Johnson AH (1995b) Nutrient accumulation during primary succession in a montane tropical forest, Puerto Rico. Soil Sci Soc Am J 59:1444–1452Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lawrence R. Walker
    • 1
  • Eduardo Velázquez
    • 1
  • Aaron B. Shiels
    • 2
  1. 1.School of Life SciencesUniversity of Nevada Las VegasLas VegasUSA
  2. 2.Department of BotanyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations