Advertisement

Plant and Soil

, Volume 319, Issue 1–2, pp 185–207 | Cite as

Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography

  • Iyad Srayeddin
  • Claude Doussan
Regular Article

Abstract

Saving water for crop production is an old, but ongoing, challenge which requires a better understanding of the in situ functioning of root systems. In particular, this requires a better quantification and understanding of the spatial and temporal variability of the root water uptake at the field scale. Electrical Resistivity Tomography (ERT) is a non-destructive soil imaging technique, related to water content, which could help in spatializing active zones of water uptake. In this article, we evaluate ERT as an alternative method for quantifying and spatializing root water uptake at the field scale. To this aim, an experimental field study with maize and sorghum submitted to different water supply levels (Fully, Moderately or Poorly Irrigated treatments—FI, MI, PI zones) was conducted for 3 months with concomitant conventional, local, water balance measurements and 2D ERT imaging. ERT images showed an heterogeneous depletion of soil water by the crops, particularly, in the MI and PI zones with patches of high/low electrical resistivity (and thus water content) variations. This heterogeneity was greatest in the MI zone and points to spatial variations in rooting pattern and/or root efficiency. The 5-days difference in electrical resistivity could be quantitatively related to root uptake in the surface layer (down to 60 cm) but the relationship depends on the mean soil water content. At greater soil depth, in the water stressed zones, the water extraction front progressing downwards could not be assessed with the ERT surface setting used in this study. As a conclusion, ERT can be a useful, unique, technique for monitoring and estimating field water uptake by plant roots and its variability if combined water content measurements are available for in situ calibration and if the sensitivity/resolution of the technique is improved for estimation over the whole root zone.

Keywords

Electrical resistivity tomography Water uptake Maize Sorghum Water availability 

Notes

Acknowledgments

We thank André Revil for the use of the resistivity-meter, Estelle Esbérard, Alain Coste and the Experimental Unit group for technical assistance with crops and field management and Colleagues of the laboratory for fruitful discussions.

References

  1. Aaltonen J (2001) Seasonal resistivity variations in some different swedisch soils. Eur J Environ. Eng Geophys 6:33–45CrossRefGoogle Scholar
  2. Ahmed AM, Sulaiman WN (2001) Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey. Environ Manage 28(5):655–663 doi: 10.1007/s002670010250 PubMedCrossRefGoogle Scholar
  3. Amato M, Ritchie JT (2002) Spatial distribution of roots and water uptake of maize (Zea mays L.) as affected by soil structure. Crop Sci 42:773–780Google Scholar
  4. Archie E (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Amer Inst Min Metal Pet Eng 146–154Google Scholar
  5. Backer R, Moore J (1998) The application of time lapse electrical tomography in ground water studies. Lead Edg 17:1454–1458 doi: 10.1190/1.1437878 CrossRefGoogle Scholar
  6. Bavel CHM, Underwood N, Swanson RW (1956) Soil moisture measurements by neutron moderation. J Soil Sci 82:29–41Google Scholar
  7. Benderitter Y, Schott JJ (1999) Short time variation of the resistivity in an unsaturated soil: the relationship with rainfall. Eur J Environ Eng Geophys 4:37–49Google Scholar
  8. Binley A, Kemma A (2005) DC resistivity and induced polarization methods. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Water Science and Technology Library. Vol. 50, Springer pub., 129–156Google Scholar
  9. Binley A, Shaw B, Henry PS (1996) Flow pathways in porous media: electrical resistance tomogramphy and dye staining image verification. Meas Sci Technol 7:384–390 doi: 10.1088/0957-0233/7/3/020 CrossRefGoogle Scholar
  10. Binley A, Cassiani G, Middleton R, Winship P (2002) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol (Amst) 267:147–159 doi: 10.1016/S0022-1694(02)00146-4 CrossRefGoogle Scholar
  11. Bolvin H, Chambarel A, Chanzy A (2004) Three-dimensional numerical modeling of a capacitance probe—application to measurement interpretation. Soil Sci Soc Am J 68:440–446Google Scholar
  12. Bottraud JC, Bornand M, Servat E (1984) Mesures de résistivité et étude du comportement agronomique d’un sol. Sci Sol 4:295–308Google Scholar
  13. Bruckler L, Lafolie F, Doussan C, Bussière F (2004) Modeling soil-root water transport with non-uniform water supply and heterogeneous root distribution. Plant and Soil 260:205–224CrossRefGoogle Scholar
  14. Campbell GS (1991) Simulation of water uptake by plant roots. Modelling Plant and Soil Systems. Agronomy Monograph No.31, Madison, WI, USA, pp 273–286Google Scholar
  15. Campbell RA, Bower CA, Richards LA (1948) Change of electrical conductivity with temperature and relaion of osmotic pressure to electrical conductivity and ion concentration for soil extracts. Soil Sci Soc Am Proc 13:66–69Google Scholar
  16. Canadell J, Jackson RB, Ehleringer JR, Monney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595 doi: 10.1007/BF00329030 CrossRefGoogle Scholar
  17. Clothier BE, Green SR (1997) Roots the big movers of water and chemicals in soil. J Soil Sci 162:534–543 doi: 10.1097/00010694-199708000-00002 CrossRefGoogle Scholar
  18. Coners H, Leuschner C (2005) In situ measurement of fine root water absorption in three temperate tree species—temporal variability and control by soil and atmospheric factors. Basic Appl Ecol 6(4):395–405 doi: 10.1016/j.baae.2004.12.003 CrossRefGoogle Scholar
  19. Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442 doi: 10.1029/91WR03087 CrossRefGoogle Scholar
  20. Depountis N, Harris C, Davies MCR (2001) An assessment of miniaturised electrical imaging equipment to monitor pollution plume evolution in scaled centrifuge modelling. Eng Geol 60:83–94 doi: 10.1016/S0013-7952(00)00091-0 CrossRefGoogle Scholar
  21. Descloitres M, Ribolzi O, Yann Le Troquer Y, Thiébaux JP (2008) Study of water tension differences in heterogeneous sandy soils using surface ERT. J Appl Geophys 64:83–98 doi: 10.1016/j.jappgeo.2007.12.007 CrossRefGoogle Scholar
  22. Fangary YS, Williams RA, Neil WA, Bond J, Faulks I (1998) Application of electrical resistivity tomography to detect deposition in hydraulic conveying systems. Powder Technol 95:61–66 doi: 10.1016/S0032-5910(97)03317-2 CrossRefGoogle Scholar
  23. FAO (2006) Water development and management unit, mapping existing global systems and intiatives, background document 21 August.Google Scholar
  24. Farré I, Marίa Faci J (2006) Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric. Water Manage 83:135–143CrossRefGoogle Scholar
  25. Feddes RA, Kowalik P, Kolinska-Malinka K, Zaradny H (1976) Estimation of field water uptake by plants using a soil water dependent root extraction function. J Hydrol (Amst) 31:13–26 doi: 10.1016/0022-1694(76)90017-2 CrossRefGoogle Scholar
  26. French HK, Hardbattle C, Binley A, Winship P, Jakobsen L (2002) Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography. J Hydrol (Amst) 267(3–4):273–284 doi: 10.1016/S0022-1694(02)00156-7 CrossRefGoogle Scholar
  27. Fukue M, Minato T, Horibe H, Taya N (1999) The micro-structures of clay given by resistivity measurements. Eng Geol 54:43–53 doi: 10.1016/S0013-7952(99)00060-5 CrossRefGoogle Scholar
  28. Gardner W, Kirkham D (1952) Determination of soil moisture by neutron scattering. J Soil Sci 73:391–401Google Scholar
  29. Garrigues E, Doussan C, Pierret A (2006) Water uptake by plant roots: I-Formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 283:83–98 doi: 10.1007/s11104-004-7903-0 CrossRefGoogle Scholar
  30. Giao PH, Chung SG, Kim DY, Tanaka H (2003) Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits. J Appl Geophys 52:157–175 doi: 10.1016/S0926-9851(03)00002-8 CrossRefGoogle Scholar
  31. Hanks RJ, Keller J, Rasmussen VP, Wilson GD (1976) Line source sprinkler for continuous variable irrigation-crop production studies. Soil Sci Soc Am J 40:426–429Google Scholar
  32. Hopmans JW, Bristow KL (2002) Current capabilities and future needs of root water and nutrient uptake modeling. Adv Agron 77:103–183 doi: 10.1016/S0065-2113(02)77014-4 CrossRefGoogle Scholar
  33. Hupet F, Vanclooster M (2005) Micro-variability of hydrological processes at the maize row scale: implications for soil water content measurements and soil moisture estimates. J Hydrol (Amst) 303:247–270 doi: 10.1016/j.jhydrol.2004.07.017 CrossRefGoogle Scholar
  34. Kalinski RJ, Kelly WE (1993) Estimating water content of soils from electrical resistivity. Geo tech Test J 16:323–329Google Scholar
  35. Katul G, Todd P, Pataki D, Kabala ZJ, Oren R (1997) Soil water depletion by oak trees and the influence of root water uptake on the moisture content spatial statistics. Water Resour Res 33:611–623 doi: 10.1029/96WR03978 CrossRefGoogle Scholar
  36. Kemna A, Kulessa B, Vereecken H (2002) Imaging and characterisation of sub-surface solute transport using electrical resistivity tomography (ERT) and equivalent transport model. J Hydrol (Amst) 267(3–4):125–146 doi: 10.1016/S0022-1694(02)00145-2 CrossRefGoogle Scholar
  37. Koumanov KS, Hopmans JW, Schwankl LW (2006) Spatial and temporal distribution of root water uptake of an almond tree under microsprinkler irrigation. Irrig Sci 24:267–278 doi: 10.1007/s00271-005-0027-3 CrossRefGoogle Scholar
  38. Lamotte M, Bruand A, Dabas M, Donfack P, Gabalda G, Hesse A, Humbel FX, Robain H (1994) Distribution d’un horizon à forte cohésion au sein d’une couverture de sol aride du Nord-Cameroun: apport d’une prospection électrique. Comptes rendus à l’academie des sciences Earth Planet Sci 318:961–968Google Scholar
  39. Li Y, Wallach R, Cohen Y (2002) The role of soil hydraulic conductivity on the spatial and temporal variation of root water uptake in drip-irrigated corn. Plant Soil 243:131–142 doi: 10.1023/A:1019911908635 CrossRefGoogle Scholar
  40. Loke MH, Barker RD (1996) Rapid least-squares Inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152 doi: 10.1111/j.1365-2478.1996.tb00142.x CrossRefGoogle Scholar
  41. Mahmut GD, Gökhan G, Merciç A, Kurtulmuş T (2006) Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey. Environ Geol. 50:147–155 doi: 10.1007/s00254-006-0194-4 CrossRefGoogle Scholar
  42. McCarter WJ (1984) The electrical resisitivity characteristics of comacted clays. Heriot-Watt University, EdinburghGoogle Scholar
  43. Michot D, Benderitter Y, Dorigny A, Nicoullaud B, King D, Tabbagh A (2003) Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour Res 39(5):1138 doi: 10.1029/2002WR001581 CrossRefGoogle Scholar
  44. Molz FJ (1981) Models of water transport in the soil-plant system: a review. Water Resour Res 17:1245–1260 doi: 10.1029/WR017i005p01245 CrossRefGoogle Scholar
  45. Park S (1998) Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring data. Geophysics 63(1):41–51 doi: 10.1190/1.1444326 CrossRefGoogle Scholar
  46. Passioura JB (1988) Water transport in and to roots. Annu Rev Plant Physiol 39:245–265 doi: 10.1146/annurev.pp.39.060188.001333 CrossRefGoogle Scholar
  47. Pierret A, Doussan C, Pagès L (2006) Spatio-temporal variations in axial conductance of primary and first-order lateral roots of a maize crop as predicted by a model of the hydraulic architecture of root systems. Plant Soil 282:117–126 doi: 10.1007/s11104-005-5373-7 CrossRefGoogle Scholar
  48. Rhoades JD, Kaddah MT, Halvorson AD, Prather RJ (1977) Establishing soil electrical conductivity salinity calibration using four electrodes cells containing undisturbed soil cores. Soil Sci 123:137–141 doi: 10.1097/00010694-197703000-00001 CrossRefGoogle Scholar
  49. Said AH (2007) Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J Exp Bot 58(4):839–854Google Scholar
  50. Shima H (1992) 2-D and 3-D resistivity image reconstruction using cross hole data. Geophysics 57(10):1270–1281 doi: 10.1190/1.1443195 CrossRefGoogle Scholar
  51. Singh BR, Singh DP (1995) Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation. Field Crops Res 42:57–67CrossRefGoogle Scholar
  52. Singha K, Gorelick SM (2006) Effect of spatially variable resolution on fieldscale estimates of tracer concentration from electrical inversions using Archie’s law. Geophysics 71(3):83–89 doi: 10.1190/1.2194900 CrossRefGoogle Scholar
  53. Samouëlian A, Cousin I, Richard G, Tabbagh A, Bruand A (2003) Electrical resistivity imaging for detecting soil cracking at the centmetric scale. Soil Sci Soc J Am 67:1319–1326CrossRefGoogle Scholar
  54. Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83:173–193 doi: 10.1016/j.still.2004.10.004 CrossRefGoogle Scholar
  55. Slater L, Binley AM, Daily W, Johnson R (2000) Cross-hole electrical imaging of a controlled saline tracer injection. J Appl Geophys 44:85–102 doi: 10.1016/S0926-9851(00)00002-1 CrossRefGoogle Scholar
  56. Suzuki K, Higashi S (2001) Groundwater flow after heavy rain in landslide-slope area from 2-D inversion of resistivity monitoring data. Geophysics 49:1708–1717Google Scholar
  57. Tardieu F (1988) Analysis of the spatial variability in maize root density. I. Effect of wheel compaction on the arrangement of roots. Plant Soil 107:273–278 doi: 10.1007/BF02370557 CrossRefGoogle Scholar
  58. Tabbagh A, Dabas M, Hesse A, Panissod C (2000) Soil resistivity: a non-invasive tool to map soil structure horizonation. Geoderma 97:393–404 doi: 10.1016/S0016-7061(00)00047-1 CrossRefGoogle Scholar
  59. Topp GC, Davis JL, Annan AB (1980) Electromagnetic determination of soil water content, measurements in coaxial transmission lines. Water Resour Res 16:574–582 doi: 10.1029/WR016i003p00574 CrossRefGoogle Scholar
  60. Vachaud G, Dancett C, Sonko S et Thony JL (1978) Méthodes de caractérisation hydrodynamique in situ d’un sol non saturé, application à deux types de sol du Sénégal en vue de la détermination des termes du bilan hydrique. Annales agronomiques 29(1):1–36Google Scholar
  61. Van Genuchten MT (1980) A closed-form equation for predicting hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898Google Scholar
  62. Vereecken H, Kamai T, Harter T, Kasteel R, Hopmans J, Vanderborght J (2007) Explaining soil moisture variability as a function of mean soil moisture: a stochastic unsaturated flow perspective. Geophys Res Lett 34(22):L22402 doi: 10.1029/2007GL031813 CrossRefGoogle Scholar
  63. Zhou QY, Shimada J, Sato A (2001) Three-dimentional spatial and temporal monotoring of soil water content using electrical resistivity tomography. Water Resour Res 37(2):273–285 doi: 10.1029/2000WR900284 CrossRefGoogle Scholar
  64. Zhu JJ, Kang HZ, Gonda Y (2007) Application of Wenner configuration to estimate soil water content in pine plantations on sandy land. Pedosphere 17(6):801–812 doi: 10.1016/S1002-0160(07)60096-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.INRA / UAPV UMR 1114 EMMAHAvignon Cedex 9France

Personalised recommendations