Plant and Soil

, Volume 319, Issue 1–2, pp 163–174 | Cite as

Oak decline in Helsinki portrayed by tree-rings, climate and soil data

  • S. HelamaEmail author
  • A. Läänelaid
  • J. Raisio
  • H. Tuomenvirta
Regular Article


Oak decline has recently been observed in and around Helsinki. Tree-ring widths of pedunculate oak were used to assess pre-mortem growth patterns, their dependence on climatic factors and linkages to soil thickness. Tree-ring chronologies were constructed in three tree vigour classes (healthy, declining and dying oaks). Characteristic “summer response” was found as a positive influence of summer precipitation was the most important climatic factor limiting the radial growth in all vigour classes. On the other hand, a differing “winter response” was found for tree-rings of dying and other classes of oaks. The growth of dying oaks was more sensitive to variations in mid-winter temperatures, due presumably to higher risk of frost damage to their roots. Recent summer droughts, which may have increased the potential for bark necrosis due to reinforcing effects from defoliation in decreasing the capability of oaks to acclimatize to winter frost, may thus have played a role in this decline. Amplified water stress was indicated by dendrochronological parameters on sites with shallow soils.


Biometeorology Dendrochronology Drought Plant-water relations Quercus robur L. 



We thank two anonymous referees for critical review of the manuscript. Oaks were cored in Villa Anneberg under licence from the City of Helsinki (HKR 2007-814). This study was supported by the Academy of Finland (grant #122033).


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr AC-19:716–723 doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Aniol RW (1983) Tree-ring analysis using CATRAS. Dendrochronologia 1:45–53Google Scholar
  3. Ashby WC, Fritts HC (1972) Tree growth, air pollution, and climate near LaPorte, Ind. Bull Am Meteorol Soc 53:246–251 doi: 10.1175/1520-0477(1972)053<0246:TGAPAC>2.0.CO;2 CrossRefGoogle Scholar
  4. Axelrod DI (1983) Biogeography of oaks in the arcto-tertiary province. Ann Mo Bot Gard 70:629–657 doi: 10.2307/2398982 CrossRefGoogle Scholar
  5. Barklund P, Wahlström K (1998) Death of oaks in Sweden since 1987. In: Cech TL, Hartmann G, Tomiczek C (eds) Disease/environment interactions in forest decline. Proceedings of a Workshop on Disease/Environment Interactions in Forest Decline IUFRO Vienna, 1998. Federal Forest Research Center, Vienna, Austria, p 193Google Scholar
  6. Bednarz Z, Ptak J (1990) The influence of temperature and precipitation on ring widths of oak (Quercus robur L.) in the Niepolomice forest near Cracow, Southern Poland. Tree-Ring Bull 50:1–10Google Scholar
  7. Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–914 doi: 10.1890/03-5011 CrossRefGoogle Scholar
  8. Biocca M, Tainter FH, Starkey DA, Oak SW, Williams JG (1993) The persistence of oak decline in the Western North Carolina Nantahala mountains. Castanea 58:178–184Google Scholar
  9. Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15:139–150Google Scholar
  10. Biondi F, Swetnam TW (1987) Box-Jenkins models of forest interior tree-ring chronologies. Tree Ring Bull 47:71–96Google Scholar
  11. Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311 doi: 10.1016/j.cageo.2003.11.004 CrossRefGoogle Scholar
  12. Box GEP, Jenkins GM (1970) Time series analysis: forecasting and control. Holden-Day, San FranciscoGoogle Scholar
  13. Bräker OU (1981) Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitt Forstl Bundes-Vers anst Wien 142:75–102Google Scholar
  14. Bréda N, Granier A, Barataud F, Moyne C (1995) Soil water dynamics in an oak stand. Plant Soil 172:17–27 doi: 10.1007/BF00020856 CrossRefGoogle Scholar
  15. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Sci 63:625–644 doi: 10.1051/forest:2006042 CrossRefGoogle Scholar
  16. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim Dyn 7:111–119 doi: 10.1007/BF00211153 CrossRefGoogle Scholar
  17. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov E (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941 doi: 10.1029/2000JD900617 CrossRefGoogle Scholar
  18. Catton HA, St. George S, Remphrey WR (2007) An evaluation of bur oak (Quercus macrocarpa) decline in the urban forest of Winnipeg, Manitoba, Canada. Arboriculture Urban Forestry 33:22–30Google Scholar
  19. Cook ER (1985) A time-series analysis approach to tree-ring standardization, Doctoral thesis. University of Arizona, TucsonGoogle Scholar
  20. Cook ER (1987) The decomposition of tree-ring series for environmental studies. Tree Ring Bull 47:37–59Google Scholar
  21. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  22. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333 doi: 10.1007/s10342-005-0085-3 Google Scholar
  23. Drexhage M, Huber F, Colin F (1999) Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil 217:101–110 doi: 10.1023/A:1004647418616 CrossRefGoogle Scholar
  24. Drobyshev I, Anderson S, Sonesson K (2007a) Crown condition dynamics of oak in southern Sweden 1988–1999. Environ Monit Assess 134:199–210 doi: 10.1007/s10661-007-9610-9 PubMedCrossRefGoogle Scholar
  25. Drobyshev I, Linderson H, Sonesson K (2007b) Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24:97–108 doi: 10.1016/j.dendro.2006.10.004 CrossRefGoogle Scholar
  26. Drobyshev I, Niklasson M, Eggertsson O, Linderson H, Sonesson K (2008) Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann Sci 65:512CrossRefGoogle Scholar
  27. Dwyer JP, Cutter BE, Wetteroff JJ (1995) A dendrochronological study of black and scarlet oak decline in the Missouri Ozarks. For Ecol Manage 75:69–75 doi: 10.1016/0378-1127(95)03537-K CrossRefGoogle Scholar
  28. Fritts HC (1962) An approach to dendroclimatology: screening by means of multiple regression techniques. J Geophys Res 67:1413–1420 doi: 10.1029/JZ067i004p01413 CrossRefGoogle Scholar
  29. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  30. Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188 doi: 10.1016/S0065-2504(08)60158-0 CrossRefGoogle Scholar
  31. Fritts HC, Smith DG, Cardis CAJW, Budelsky CA (1965) Tree-ring characteristics along a vegetation gradient in Northern Arizona. Ecology 46:393–401 doi: 10.2307/1934872 CrossRefGoogle Scholar
  32. Führer E (1998) Oak decline in central Europe: a Synopsis of Hypotheses. In: McManus ML, Liebhold AM (eds) Proceedings: population dynamics, impacts, and integrated management of forest defoliating insects. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. Gen. Tech. Rep. NE-247:7–24Google Scholar
  33. Gibbs JN, Greig BJW (1997) Biotic and abiotic factors affecting the dying back of pedunculate oak Quercus robur L. Forestry 70:399–406 doi: 10.1093/forestry/70.4.399 CrossRefGoogle Scholar
  34. Göransson H, Wallander H, Ingerslev M, Rosengren U (2006) Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies. Plant Soil 286:87–97 doi: 10.1007/s11104-006-9028-0 CrossRefGoogle Scholar
  35. Göransson H, Fransson A-M, Jönsson-Belyazid U (2007) Do oaks have different strategies for uptake of N, K and P depending on soil depth? Plant Soil 297:119–125 doi: 10.1007/s11104-007-9325-2 CrossRefGoogle Scholar
  36. Göransson H, Ingerslev M, Wallander H (2008) The vertical distribution of N and K uptake in relation to root distribution and root uptake capacity in mature Quercus robur, Fagus sylvatica and Picea abies stands. Plant Soil 306:129–137 doi: 10.1007/s11104-007-9524-x CrossRefGoogle Scholar
  37. Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12:657–665 doi: 10.1191/0959683602hl578rp CrossRefGoogle Scholar
  38. Guiot J (1986) ARMA techniques for modelling tree-ring response to climate and for reconstructing variations of paleoclimates. Ecol Modell 33:149–171 doi: 10.1016/0304-3800(86)90038-4 CrossRefGoogle Scholar
  39. Hartmann G, Blank R (1992) Winterfrost, Kahlfrass und Prachtkäpferbefall als Faktoren im Ursachenkomplex des Eichensterbens in Norddeutschland. Summary in English: winter frost, insect defoliation and Agrilus biguttatus Fabr. as causal factors of oak decline in northern Germany. Forst Holz 47:443–452Google Scholar
  40. Hartmann G, Blank R, Lewark S (1989) Eichensterben in Norddeutschland. Verbreitung, Schadbilder, mögliche Ursachen. Summary in English: oak decline in Northern Germany. Distribution, symptoms, probable causes. Forst Holz 44:475–487Google Scholar
  41. Helama S, Timonen M, Lindholm M, Meriläinen J, Eronen M (2005) Extracting long-period climate fluctuations from tree-ring chronologies over timescales of centuries to millennia. Int J Climatol 25:1767–1779 doi: 10.1002/joc.1215 CrossRefGoogle Scholar
  42. Helama S, Vartiainen M, Kolström T, Peltola H, Meriläinen J (2008) X-ray microdensitometry applied to subfossil tree-rings: growth characteristics of ancient pines from the southern boreal forest zone in Finland at intra-annual to centennial time-scales. Veg Hist Archaeobot 17:675–686 doi: 10.1007/s00334-008-0147-9 CrossRefGoogle Scholar
  43. Hirano T, Morimoto K (1999) Growth reduction of the Japanese black pine corresponding to an air pollution episode. Environ Pollut 106:5–12 doi: 10.1016/S0269-7491(99)00063-9 PubMedCrossRefGoogle Scholar
  44. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–75Google Scholar
  45. Huntington E (1914) The climatic factor as illustrated in Arid America. Carnegie Institution Publ 192:1–341Google Scholar
  46. Hydrografinen toimisto (1944) Vuosikirja 12 Årsbok 1937–1940. Helsinki. Valtioneuvoston kirjapaino [In Finnish and Swedish]Google Scholar
  47. Hydrografinen toimisto (1948) Vuosikirja 13 Årsbok 1941–1945. Helsinki. Valtioneuvoston kirjapaino [In Finnish and Swedish]Google Scholar
  48. Jones EW (1959) Quercus L. Biological Flora of the British Isles. J Ecol 47:169–222 doi: 10.2307/2257253 CrossRefGoogle Scholar
  49. Jönsson U (2004) Phytophthora species and oak decline—can a weak competitor cause significant root damage in a nonsterilized acidic forest soil? New Phytol 162:211–222 doi: 10.1111/j.1469-8137.2004.01016.x CrossRefGoogle Scholar
  50. Jönsson U, Lundberg L, Sonesson K, Jung T (2003) First records of soilborne Phytophthora species in Swedish oak forests. For Pathol 33:175–179 doi: 10.1046/j.1439-0329.2003.00320.x Google Scholar
  51. Jönsson U, Jung T, Sonesson K, Rosengren U (2005) Relationships between health of Quercus robur, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathol 54:502–511 doi: 10.1111/j.1365-3059.2005.01228.x CrossRefGoogle Scholar
  52. Jung T, Blaschke H, Oßwald W (2000) Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathol 49:706–718 doi: 10.1046/j.1365-3059.2000.00521.x CrossRefGoogle Scholar
  53. Jung T, Cooke DEL, Blaschke H, Duncan JM, Oßwald W (1999) Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol Res 103:785–798 doi: 10.1017/S0953756298007734 CrossRefGoogle Scholar
  54. Kuusisto E (2003) Paha kuivuus lisäsi jatkosodan ankeutta. Helsingin Sanomat 12.4.2003:C17Google Scholar
  55. Kuusisto E (2004) Kuvaus 1940-luvun poikkeuksellisesta kuivuudesta. Finn Environ 731:48Google Scholar
  56. Läänelaid A (2000) Five pine samples represent climate impact as well as eleven pines. University of Joensuu, Faculty of Forestry. Res Notes 108:119–128Google Scholar
  57. Mikola P (1950) Puiden kasvun vaihteluista ja niiden merkityksestä kasvututkimuksessa. Summary: on the variations in tree growth and their significance to growth studies. Commun Inst For Fenn 38(5):1–131Google Scholar
  58. Monserud RA (1986) Time-series analyses of tree-ring chronologies. For Sci 32:349–372Google Scholar
  59. Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-Wesley, Reading, MassachusettsGoogle Scholar
  60. Ogle K, Whitham TG, Cobb NS (2000) Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology 81:3237–3243Google Scholar
  61. Oosterbaan A, Nabuurs GJ (1991) Relationships between oak decline and groundwater class in The Netherlands. Plant Soil 136:87–93 doi: 10.1007/BF02465223 CrossRefGoogle Scholar
  62. Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93CrossRefGoogle Scholar
  63. Pilcher JR, Gray B (1982) The relationships between oak tree growth and climate in Britain. J Ecol 70:297–304 doi: 10.2307/2259880 CrossRefGoogle Scholar
  64. Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann Sci 58:237–251 doi: 10.1051/forest:2001123 CrossRefGoogle Scholar
  65. Rozas V (2005) Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann Sci 62:209–218 doi: 10.1051/forest:2005012 CrossRefGoogle Scholar
  66. Schulman MD, Bryson RA (1965) A statistical study of dendroclimatic relationships in South Central Wisconsin. J Appl Meteorol 4:107–111 doi: 10.1175/1520-0450(1965)004<0107:ASSODR>2.0.CO;2 CrossRefGoogle Scholar
  67. Seeger M (1930) Erfahrungen über die Eiche in der Rheinebene bei Emmendinger (Baden). Allg Forst- und Jagdtztg 106:201–219Google Scholar
  68. Silander J, Järvinen EA (eds) (2004) Vuosien 2002–2003 poikkeuksellisen kuivuuden vaikutukset. Abstract in English: effects of severe drought of 2002/2003. The Finnish Environment 731:1–79Google Scholar
  69. Siwecki R, Ufnalski K (1998) Review of oak stand decline with special reference to the role of drought in Poland. Eur J Forest Pathol 28:99–112 doi: 10.1111/j.1439-0329.1998.tb01171.x CrossRefGoogle Scholar
  70. Sonesson K (1999) Oak decline in southern Sweden. Scand J For Res 14:368–375 doi: 10.1080/02827589950152692 CrossRefGoogle Scholar
  71. Spiecker H (2002) Tree rings and forest management in Europe. Dendrochronologia 20:191–202 doi: 10.1078/1125-7865-00016 CrossRefGoogle Scholar
  72. Tainter FH, Fraedrich SW, Benson DM (1984) The effect of climate on growth, decline, and death of northern red oaks in the Western North Carolina Nantahala Mountains. Castanea 49:127–137Google Scholar
  73. Tainter FH, Retzlaff WA, Starkey DA, Oak SW (1990) Decline of radial growth in red oaks is associated with short-term changes in climate. Eur J For Path 20:95–105 doi: 10.1111/j.1439-0329.1990.tb01277.x CrossRefGoogle Scholar
  74. Tessier L, Nola P, Serre-Bachet F (1994) Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytol 126:355–367 doi: 10.1111/j.1469-8137.1994.tb03955.x CrossRefGoogle Scholar
  75. Thomas FM, Hartmann G (1996) Soil and tree water relations in mature oak stands of northern Germany differing in the degree of decline. Ann Sci 53:697–720 doi: 10.1051/forest:19960247 CrossRefGoogle Scholar
  76. Thomas FM, Hartmann G (1998) Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant Soil 203:145–158 doi: 10.1023/A:1004305410905 CrossRefGoogle Scholar
  77. Thomas FM, Ahlers U (1999) Effects of excess nitrogen on frost hardiness and freezing injury of above-ground tissue in young oaks (Quercus petraea and Q. robur). New Phytol 144:73–83 doi: 10.1046/j.1469-8137.1999.00501.x CrossRefGoogle Scholar
  78. Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Pathol 32:277–307 doi: 10.1046/j.1439-0329.2002.00291.x Google Scholar
  79. Thomas FM, Meyer G, Popp M (2004) Effects of defoliation on the frost hardiness and the concentrations of soluble sugars and cyclitols in the bark tissue of pedunculate oak (Quercus robur L.). Ann Sci 61:455–463 doi: 10.1051/forest:2004039 CrossRefGoogle Scholar
  80. Tuomenvirta H (2004) Reliable estimation of climatic variations in Finland. Finn Meteorol Inst Contrib 43:1–79Google Scholar
  81. Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments. Ecol Stud 183:1–354 doi: 10.1007/3-540-31298-6_1 CrossRefGoogle Scholar
  82. van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112 doi: 10.1016/j.dendro.2007.03.004 CrossRefGoogle Scholar
  83. Warren WG (1980) On removing the growth trend from dendrochronological data. Tree Ring Bull 40:35–44Google Scholar
  84. Ympäristöraportoinnin asiantuntijatyöryhmä (2004) Helsingin kaupungin ympäristöraportti 2003. Environment Centre, City of Helsinki. p 45. [In Finnish]Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Helama
    • 1
    Email author
  • A. Läänelaid
    • 2
  • J. Raisio
    • 3
  • H. Tuomenvirta
    • 4
  1. 1.Department of GeologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of GeographyUniversity of TartuTartuEstonia
  3. 3.The City of HelsinkiThe Public Works Department, Street and Park DivisionHelsinkiFinland
  4. 4.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations