Plant and Soil

, 318:101 | Cite as

Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: a Michaelis–Menten modelling approach

  • Daniele MassaEmail author
  • Neil S. Mattson
  • Heinrich J. Lieth
Regular Article


Greenhouse-grown cut flower roses are often irrigated with moderately saline irrigation water. The salt/ballast ions are either present initially in poor quality raw water or reclaimed municipal water, or accumulated in greenhouse irrigation water that is captured and reused. Such ions can inhibit root absorption of essential nutrients. The objective of this work was to quantify the influence of NaCl concentration on the uptake of nitrate and potassium by roses and develop a predictive model of uptake inhibition based on NaCl, NO3 , and K+ concentration. One year-old rose plants (Rosa spp. ‘Kardinal’ on ‘Natal Briar’ rootstock) were moved into growth chambers where nitrogen and potassium depletion were monitored during 6 days. Eight different initial NaCl treatments varying from zero to 65 mol m−3 were used and within these there were two initial NO3 and K+ concentrations: high concentration (HC, 7.0 mol m−3 and 2.6 mol m−3 NO3 and K+ respectively) or low concentration (LC, 3.5 mol m−3 and 1.3 mol m−3 NO3 and K+ respectively). Plant NO3 uptake was negatively affected by NaCl concentration. NO3 maximum influx (Imax) declined from 5.1 µmol to 2.5 µmol per gram of plant dry weight per hour as NaCl concentration increased from zero to 65 mol m−3. A modified Michaelis–Menten (M–M) equation taking into account inhibition by NaCl provided the best fit for NO3 uptake in response to varying NaCl concentration. K+ uptake was unaffected by NaCl concentration. A M–M equation that did not include inhibition was suitable for describing K+ uptake at varying NaCl concentration. The resulting empirical models could assist with decision making, such as: adjustment of NO3 fertilization based on NaCl concentration, necessity of water desalinization, or determination of the desired leaching fraction.


Rosa spp. Nitrate Potassium Salinity Uptake kinetics Modelling 


  1. Adamowicz S, Le Bot J (1999) Trends in modelling nitrate uptake. Acta Hortic 507:231–239Google Scholar
  2. Aslam M, Huffaker RC, Rains DW (1984) Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol 76:321–325PubMedCrossRefGoogle Scholar
  3. Baas R, Van den Berg D (1999) Sodium accumulation and nutrient discharge in recirculation systems: a case study with roses. Acta Hortic 507:157–164Google Scholar
  4. Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York, USAGoogle Scholar
  5. Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169 doi: 10.1046/j.1469-8137.2000.00682.x CrossRefGoogle Scholar
  6. Bougoul S, Brun R, Jaffrin A (2000) Nitrate absorption-concentration of Rosa hybrida cv. Sweet Promise grown in soilless culture. Agronomie 20:165–174 doi: 10.1051/agro:2000117 CrossRefGoogle Scholar
  7. Britto DT, Ruth TJ, Lapi S, Kronzucker HJ (2004) Cellular and whole-plant chloride dynamics in barley: insights into chloride-nitrogen interactions and salinity responses. Planta 218:615–622 doi: 10.1007/s00425-003-1137-x PubMedCrossRefGoogle Scholar
  8. Brun R, Chazelle L (1996) Water and nitrate absorption kinetics in the nychthemeral cycle of rose grown in the greenhouse using a recirculating solution. J Plant Nutr 19:839–866CrossRefGoogle Scholar
  9. Brun R, Sttembrino A, Couve C (2001) Recycling of nutrient solutions for rose (Rosa hybrida) in soilless culture. Acta Hortic 554:183–191Google Scholar
  10. Cabrera RI (2002) Rose yield, dry matter partitioning and nutrient status responses to rootstock selection. Sci Hortic (Amsterdam) 95:75–83 doi: 10.1016/S0304-4238(02)00020-1 CrossRefGoogle Scholar
  11. Cabrera RI, Perdomo P (2003) Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience 38:533–536Google Scholar
  12. Cabrera F, Reyes A, Fernandez Boy E, Cayuela JA, Murillo JM, Moreno F (1993) Losses of nitrate from a sandy loam soil under corn: lysimeter experiment. Acta Hortic 335:59–64Google Scholar
  13. Cabrera RI, Evans RY, Paul JL (1995) Nitrogen partitioning in rose plants over a flowering cycle. Sci Hortic (Amsterdam) 63:67–76 doi: 10.1016/0304-4238(95)00790-Z CrossRefGoogle Scholar
  14. Cachorro P, Ortiz A, Cerda A (1994) Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil 159:205–212 doi: 10.1007/BF00009282 CrossRefGoogle Scholar
  15. Carmassi G, Incrocci L, Maggini R, Malorgio F, Tognoni F, Pardossi A (2007) An aggregated model for water requirements of greenhouse tomato grown in closed rockwool culture with saline water. Agric Water Manage 88:73–82 doi: 10.1016/j.agwat.2006.10.002 CrossRefGoogle Scholar
  16. Cedergreen N, Madsen TV (2002) Nitrogen uptake by the floating macrophyte Lemna minor. New Phytol 155:285–292 doi: 10.1046/j.1469-8137.2002.00463.x CrossRefGoogle Scholar
  17. Cerezo M, Garcia-Agustin P, Primo-Millo E (1999) Influence of chloride and transpiration on net 15 NO3 uptake rate by Citrus roots. Ann Bot (Lond) 84:117–120 doi: 10.1006/anbo.1999.0886 CrossRefGoogle Scholar
  18. Claassen N, Barber SA (1974) A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiol 54:564–568PubMedCrossRefGoogle Scholar
  19. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818 doi: 10.1104/pp.104.057307 PubMedCrossRefGoogle Scholar
  20. Dayan E, Presnov E, Fuchs M, Asher JB (2002) Rose grow: a model to describe greenhouse rose growth. Acta Hortic 593:63–70Google Scholar
  21. Debouba M, Maaroufi-Dghimi H, Suzuki A, Ghorbel MH, Gouia H (2007) Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann Bot (Lond) 99:1143–1151 doi: 10.1093/aob/mcm050 CrossRefGoogle Scholar
  22. Dixon M, Webb EC (1979) Enzymes. Academic, New YorkGoogle Scholar
  23. Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New YorkGoogle Scholar
  24. FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO: Land and Plant Nutrition Management Service. Rome, Italy.
  25. Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic (Amsterdam) 78:127–157 doi: 10.1016/S0304-4238(98)00192-7 CrossRefGoogle Scholar
  26. Gutierrez-Colomer RP, Gonzalez-Real MM, Baille A (2006) Dry matter production and partitioning in rose (Rosa hybrida) flower shoots. Sci Hortic (Amsterdam) 107:284–291 doi: 10.1016/j.scienta.2005.08.003 CrossRefGoogle Scholar
  27. Halperin SJ, Gilroy S, Lynch JP (2003) Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis thaliana L. J Exp Bot 54:1269–1280 doi: 10.1093/jxb/erg134 PubMedCrossRefGoogle Scholar
  28. Hawkins HJ, Lewis OAM (1993) Effect of NaCl salinity, nitrogen form, calcium and potassium concentration on nitrogen uptake and kinetics in Triticum aestivum L. cv. Gamtoos. New Phytol 124:171–177 doi: 10.1111/j.1469-8137.1993.tb03807.x CrossRefGoogle Scholar
  29. Hogh-Jensen H, Wollenweber B, Schjoerring JK (1997) Kinetics of nitrate and ammonium absorption and accompanying H+ fluxes in roots of Lolium perenne L. and N2 fixing Trifolium repens L. Plant Cell Environ 20:1184–1192 doi: 10.1046/j.1365-3040.1997.d01-145.x CrossRefGoogle Scholar
  30. Hughes HE, Hanan JJ (1978) Effect of salinity in water supplies on greenhouse rose production. J Am Soc Hortic Sci 103:694–699Google Scholar
  31. Le Bot J, Adamowicz S, Robin P (1998) Modelling plant nutrition of horticultural crops: a review. Sci Hortic (Amsterdam) 74:47–82 doi: 10.1016/S0304-4238(98)00082-X CrossRefGoogle Scholar
  32. Lorenzo H, Cid MC, Siverio JM, Ruano MC (2000) Effects of sodium on mineral nutrition in rose plants. Ann Appl Biol 137:65–72 doi: 10.1111/j.1744-7348.2000.tb00058.x CrossRefGoogle Scholar
  33. Marschner H (1998) Mineral nutrition of higher plants. Accademic, LondonGoogle Scholar
  34. Martinez-Beltran J, Licona-Manzur C (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In International salinity forum managing saline soils and water: science, technology and social issues. USDA-ARS Salinity Laboratory., Riverside Convention Center, Riverside, California, USA, pp 311–314Google Scholar
  35. Mathieu J, Kurata K, Goto E, Albright L (1999) A discussion of nutrient uptake equations in hydroponic culture and their use in computer simulation. Acta Hortic 507:205–213Google Scholar
  36. Mattson NS, Lieth H, Kim WS (2006) Modeling the influence of cyclical plant growth and nutrient storage on N, P, and K absorption by hydroponically grown cut flower roses. Acta Hortic 718:445–452Google Scholar
  37. Min X, Siddiqi MY, Guy RD, Glass ADM, Kronzucker HJ (1999) A comparative study of fluxes and compartmentation of nitrate and ammonium in early-successional tree species. Plant Cell Environ 22:821–830 doi: 10.1046/j.1365-3040.1999.00450.x CrossRefGoogle Scholar
  38. Morgan KT, Wheaton AT, Parsons LR, Castle WS (2008) Effects of reclaimed municipal waste water on horticultural characteristics, fruit quality, and soil and leaf mineral concentration of citrus. HortScience 43:459–464Google Scholar
  39. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250 doi: 10.1046/j.0016-8025.2001.00808.x PubMedCrossRefGoogle Scholar
  40. Pardossi A, Malorgio F, Incrocci L, Carmassi G, Maggini R, Massa D, Tognoni F (2006) Simplified models for the water relations of soilless cultures: what they do or suggest for sustainable water use in intensive horticulture. Acta Hortic 718:425–434Google Scholar
  41. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349 doi: 10.1016/j.ecoenv.2004.06.010 PubMedCrossRefGoogle Scholar
  42. Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct Funct 18:167–174 doi: 10.1007/s00468-003-0293-8 CrossRefGoogle Scholar
  43. Peuke AD, Jeschke WD (1998) The effects of light on induction, time courses, and kinetic patterns of net nitrate uptake in barley. Plant Cell and Environ 21:765–774CrossRefGoogle Scholar
  44. Peuke AD, Jeschke WD (1999) The characterization of inhibition of net nitrate uptake by salt in salt-tolerant barley (Hordeum vulgare L. cv. California Mariout). J Exp Bot 50:1365–1372 doi: 10.1093/jexbot/50.337.1365 CrossRefGoogle Scholar
  45. Raviv M, Krasnovsky A, Medina S, Reuveni R (1998) Assessment of various control strategies for recirculation of greenhouse effluents under semi-arid conditions. J Hortic Sci Biotechnol 74:485–491Google Scholar
  46. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023 doi: 10.1093/jxb/erj108 PubMedCrossRefGoogle Scholar
  47. Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632 doi: 10.1111/j.1365-3040.1992.tb01004.x CrossRefGoogle Scholar
  48. Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160 doi: 10.1093/jxb/erj068 PubMedCrossRefGoogle Scholar
  49. Savvas D, Mantzos N, Barouchas PE, Tsirogiannis IL, Olympios C, Passam HC (2007) Modelling salt accumulation by a bean crop grown in a closed hydroponic system in relation to water uptake. Sci Hortic (Amsterdam) 111:311–318 doi: 10.1016/j.scienta.2006.10.033 CrossRefGoogle Scholar
  50. Schenk MK (1996) Regulation of nitrogen uptake on the whole plant level. Plant Soil 181:131–137 doi: 10.1007/BF00011299 CrossRefGoogle Scholar
  51. Scheurwater I, Clarkson DT, Purves JV, Rijt Gv, Saker LR, Welschen R, Lambers H (1999) Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow-growing grass species. Plant Soil 215:123–134 doi: 10.1023/A:1004559628401 CrossRefGoogle Scholar
  52. Shabala S, Cuin TA (2007) Potassium transporters and plant salt tolerance. Physiol Plant 606:1–35Google Scholar
  53. Sharifi M, Zebarth BJ (2006) Nitrate influx kinetic parameters of five potato cultivars during vegetative growth. Plant Soil 288:91–99 doi: 10.1007/s11104-006-9092-5 CrossRefGoogle Scholar
  54. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477 doi: 10.1105/tpc.010371 PubMedCrossRefGoogle Scholar
  55. Siddiqi MY, Glass ADM (1986) A model for the regulation of K+ influx, and tissue potassium concentrations by negative feedback effects upon plasmalemma influx. Plant Physiol 81:1–7PubMedCrossRefGoogle Scholar
  56. Silberbush M, Lieth JH (2004) Nitrate and potassium uptake by greenhouse roses (Rosa hybrida) along successive flower-cut cycles: a model and its calibration. Sci Hortic (Amsterdam) 101:127–141 doi: 10.1016/j.scienta.2003.10.009 CrossRefGoogle Scholar
  57. Silberbush M, Ben-Asher J, Ephrath JE (2005) A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant Soil 271:309–319 doi: 10.1007/s11104-004-3093-z CrossRefGoogle Scholar
  58. Solís-Pérez AR, Cabrera RI (2007) Evaluating counter-ion effects on greenhouse roses subjected to moderately-high salinity. Acta Hortic 751:375–380Google Scholar
  59. Sonneveld C (2000) Effect of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. PhD Thesis, Wageningen University, WageningenGoogle Scholar
  60. Stanghellini C, Kempkes F, Pardossi A, Incrocci L (2005) Closed water loop in greenhouses: effect of water quality and value of produce. Acta Hortic 691:233–241Google Scholar
  61. Szczerba MW, Britto DT, Kronzucker HJ (2006) Rapid, futile K+ cycling and pool-size dynamics define low-affinity potassium transport in barley. Plant Physiol 141:1494–1507 doi: 10.1104/pp.106.082701 PubMedCrossRefGoogle Scholar
  62. Walsh R, Martin E, Darvesh S (2007) A versatile equation to describe reversible enzyme inhibition and activation kinetics: Modeling β-galactosidase and butyrylcholinesterase. Biochim Biophys Acta 1770:733–746PubMedGoogle Scholar
  63. Wheeler EF, Albright LD, Spanswick RM, Walker LP, Langhans RW (1998) Nitrate uptake kinetics in lettuce as influenced by light and nitrate nutrition. T ASAE 41:859–867Google Scholar
  64. White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot (Lond) 88:967–988 doi: 10.1006/anbo.2001.1540 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Daniele Massa
    • 1
    • 2
    Email author
  • Neil S. Mattson
    • 3
  • Heinrich J. Lieth
    • 4
  1. 1.Dipartimento di Biologia delle Piante AgrarieUniversità di PisaPisaItaly
  2. 2.Scuola Superiore Sant’AnnaPisaItaly
  3. 3.Department of Horticulture, Plant Science BuildingCornell UniversityIthacaUSA
  4. 4.Plant Sciences DepartmentUniversity of California DavisDavisUSA

Personalised recommendations