Plant and Soil

, Volume 318, Issue 1–2, pp 73–80 | Cite as

Selenium increases seed production in Brassica

  • G. H. Lyons
  • Y. Genc
  • K. Soole
  • J. C. R. Stangoulis
  • F. Liu
  • R. D. Graham
Regular Article

Abstract

Selenium (Se) is essential for humans and animals but is not considered to be essential for higher plants. Although researchers have found increases in vegetative growth due to fertiliser Se, there has been no definitive evidence to date of increased reproductive capacity, in terms of seed production and seed viability. The aim of this study was to evaluate seed production and growth responses to a low dose of Se (as sodium selenite, added to solution culture) compared to very low-Se controls in fast-cycling Brassica rapa L. Although there was no change in total biomass, Se treatment was associated with a 43% increase in seed production. The Se-treated Brassica plants had higher total respiratory activity in leaves and flowers, which may have contributed to higher seed production. This study provides additional evidence for a beneficial role for Se in higher plants.

Keywords

Brassica rapa Micronutrient Mitochondria Reactive oxygen species (ROS) Respiration Selenium 

Notes

Acknowledgements

The authors gratefully acknowledge funding from HarvestPlus (www.HarvestPlus.org), Washington DC, the Grains Research & Development Corporation (Australia) and the Molecular Plant Breeding Co-operative Research Centre, Australia. Analytical support from Waite Analytical Services, The University of Adelaide, South Australia is gratefully acknowledged.

References

  1. Barker SJ, Stummer B, Gao L, Dsipain I, O’Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonisation: isolation and preliminary characterization. Plant J 15:791–797. doi: 10.1046/j.1365-313X.1998.00252.x Google Scholar
  2. Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367. doi: 10.1007/s11104-005-5691-9 CrossRefGoogle Scholar
  3. Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba JA, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86. doi: 10.1007/s11104-004-4039-1 CrossRefGoogle Scholar
  4. Easwari K, Lalitha K (1994) Subcellular distribution of selenium during uptake and its influence on mitochondrial oxidations in germinating Vigna radiata L. Biol Trace Elem Res 48:141–160. doi: 10.1007/BF02789188 CrossRefGoogle Scholar
  5. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. 2nd Ed. Sinauer, Massachusetts, USAGoogle Scholar
  6. Girton RE (1974) Effects of selenite selenium on respiration in maize roots. Plant Soil 40:119–127. doi: 10.1007/BF00011414 CrossRefGoogle Scholar
  7. Gomez-Casati DF, Busi MV, Gonzalez-Schain N, Mouras A, Zabaleta EJ, Araya A (2002) A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana. FEBS Lett 532:70–74. doi: 10.1016/S0014-5793(02)03631-1 PubMedCrossRefGoogle Scholar
  8. Graham RD (1975) Male sterility in wheat plants deficient in copper. Nature 254:514–515. doi: 10.1038/254514a0 CrossRefGoogle Scholar
  9. Hanson M (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25:461–486. doi: 10.1146/annurev.ge.25.120191.002333 PubMedCrossRefGoogle Scholar
  10. Hartikainen H, Xue T (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J Environ Qual 28:1372–1375CrossRefGoogle Scholar
  11. Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200. doi: 10.1023/A:1026512921026 CrossRefGoogle Scholar
  12. Heiser V, Rasmusson AG, Thieck O, Brennicke A, Grohmann L (1997) Antisense expression of the mitochondrial NADH-binding subunit of complex I in transgenic potato plants affects male fertility. Plant Sci 127:61–69. doi: 10.1016/S0168-9452(97)00118-0 CrossRefGoogle Scholar
  13. Huang J, Struck F, Matzinger DF, Levings CS (1994) Flower-enhanced expression of a nuclear-encoded mitochondrial respiratory chain protein is associated with changes in mitochondrion number. Plant Cell 6:439–448PubMedCrossRefGoogle Scholar
  14. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211. doi: 10.2307/1942661 CrossRefGoogle Scholar
  15. Jiang PD, Zhang XQ, Zhu YG, Zhu W, Xie HY, Wang XD (2007) Metabolism of reactive oxygen species in cotton cytoplasmic male sterility and its restoration. Plant Cell Rep 26:1627–1634. doi: 10.1007/s00299-007-0351-6 PubMedCrossRefGoogle Scholar
  16. Lindstrom K (1983) Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Hydrobiologia 101:35–48. doi: 10.1007/BF00008655 CrossRefGoogle Scholar
  17. Liu Q, Wang DJ, Jiang XJ, Cao ZH (2004) Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza sativa). Environ Geochem Health 26:325–330. doi: 10.1023/B:EGAH.0000039597.75201.57 PubMedCrossRefGoogle Scholar
  18. Moller IM (2001a) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591. doi: 10.1146/annurev.arplant.52.1.561 PubMedCrossRefGoogle Scholar
  19. Moller IM (2001b) A more general mechanism of cytoplasmic male fertility? Trends Plant Sci 6:560. doi: 10.1016/S1360-1385(01)02100-8 PubMedCrossRefGoogle Scholar
  20. Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218. doi: 10.1023/A:1024553303144 CrossRefGoogle Scholar
  21. Peng A, Xu Y, Lu JH, Wang ZJ (2000) Study on the dose-effect relationship of selenite with the growth of wheat. Biol Trace Elem Res 76:175–181. doi: 10.1385/BTER:76:2:175 PubMedCrossRefGoogle Scholar
  22. Pilon-Smits EAH, Garifullina GF, Abdel-Ghany A, Kato S-I, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterisation of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130:1309–1318. doi: 10.1104/pp.102.010280 Google Scholar
  23. Price NL, Thompson PA, Harrison PJ (1987) Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 23:1–9. doi: 10.1111/j.1529-8817.1987.tb04493.x CrossRefGoogle Scholar
  24. Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865. doi: 10.1105/tpc.107.050849 PubMedCrossRefGoogle Scholar
  25. Reilly C (1996) Selenium in food and health. Blackie, LondonGoogle Scholar
  26. Shrift A (1969) Aspects of selenium metabolism in higher plants. Annu Rev Plant Physiol 20:475–494. doi: 10.1146/annurev.pp.20.060169.002355 CrossRefGoogle Scholar
  27. Smart CJ, Moneger F, Leaver CJ (1994) Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 6:811–825PubMedCrossRefGoogle Scholar
  28. Smrkolj P, Germ M, Kreft I, Stibilj V (2006) Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J Exp Bot 57:3595–3600. doi: 10.1093/jxb/erl109 PubMedCrossRefGoogle Scholar
  29. Sreekala M, Santosh TR, Lalitha K (1999) Oxidative stress during selenium deficiency in seedlings of Trigonella foenum-graecum and mitigation by mimosine. 1. Hydroperoxide metabolism. Biol Trace Elem Res 70:193–207. doi: 10.1007/BF02783829 CrossRefGoogle Scholar
  30. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Mol Biol 51:401–432. doi: 10.1146/annurev.arplant.51.1.401 CrossRefGoogle Scholar
  31. Turakainen M, Hartikainen H, Seppanen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382. doi: 10.1021/jf040077x PubMedCrossRefGoogle Scholar
  32. Xue TL, Hartikainen H (2000) Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth. Agric Food Sci Finl 9:177–187Google Scholar
  33. Xue TL, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61. doi: 10.1023/A:1013369804867 CrossRefGoogle Scholar
  34. Yokota A, Shigeoka S, Onishi T, Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low-CO2-grown Chlamydomonas reinhardtii. Plant Physiol 86:649–651PubMedCrossRefGoogle Scholar
  35. Yu H, Liu J, Li J, Zang T, Luo G, Shen J (2005) Protection of mitochondrial integrity from oxidative stress by selenium-containing glutathione transferase. Appl Biochem Biotechnol 127:133–142. doi: 10.1385/ABAB:127:2:133 PubMedCrossRefGoogle Scholar
  36. Zarcinas BA, Cartwright B, Spouncer LR (1987) Nitric acid digestion and multi-element analysis of plant material by Inductively Coupled Plasma Spectrometry. Commun Soil Sci Plant Anal 18:131–146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. H. Lyons
    • 1
  • Y. Genc
    • 1
    • 2
  • K. Soole
    • 3
  • J. C. R. Stangoulis
    • 3
  • F. Liu
    • 1
  • R. D. Graham
    • 1
  1. 1.Plant and Food Science, School of Agriculture, Food and WineUniversity of AdelaideAdelaideAustralia
  2. 2.Molecular Plant Breeding Cooperative Research CentreAdelaideAustralia
  3. 3.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations