Advertisement

Plant and Soil

, 315:35 | Cite as

Distribution patterns of selected PAHs in bulk peat and corresponding humic acids from a Swiss ombrotrophic bog profile

  • C. ZacconeEmail author
  • A. Gallipoli
  • C. Cocozza
  • M. Trevisan
  • T. M. Miano
Regular Article

Abstract

An ombrotrophic peat core was collected in 2005 from Etang de la Gruère, Jura Mountains, Switzerland. The concentrations of nine among the U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) (i.e., acenaphthene, phenanthrene, fluorene, pyrene, fluoranthene, benzo[jbk]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene) were determined in both bulk peat and corresponding humic acids (HA) samples by gas chromatography equipped with a mass spectrometry detector (GC-MS). The maximum PAHs concentrations in peat (around 1,250 μg Σ PAHs kg−1 dry matter) were found at 28–30 cm of depth, which correspond to ca. 1920–1930, when coal inputs to Switzerland reached their maximum level. Amongst the nine PAHs analyzed in the peat samples, pyrene (Pyr) was the predominant species, accounting for ca. 20–100% of the total PAHs throughout the profile. In the HA fraction, that represents 24.7% (average value) of the bulk peat, only phenanthrene (Phe), and sporadically Pyr and fluoranthene (Fth), were detected. In particular, HA showed Phe concentrations that were ten–150 times higher than corresponding bulk peat samples, thus suggesting its preservation against biodegradation due to the incorporation into HA molecules.

Keywords

Atmospheric depositions GC-MS Humic substances Phenanthrene Polycyclic aromatic hydrocarbons Trace elements 

Notes

Acknowledgements

The authors would like to gratefully acknowledge Prof. W. Shotyk, University of Heidelberg, for providing the peat samples and allowing XRF analysis in his Institute. Discussions with Prof. N. Senesi, Prof. M.D.R. Pizzigallo, University of Bari, and Dr. César Plaza, Consejo Superior de Investigaciones Científicas of Madrid, were helpful and appreciated. We are grateful also to anonymous reviewers for their valuable suggestions and critical comments on the manuscript.

References

  1. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. doi: 10.1016/S0341-8162(78)80002-2 CrossRefGoogle Scholar
  2. Appleby PG, Shotyk W, Fankhauser A (1997) Lead-210 age dating of three peat cores in the Jura Mountains, Switzerland. Water Air Soil Pollut 100:223–231. doi: 10.1023/A:1018380922280 CrossRefGoogle Scholar
  3. Berset JD, Kuehne P, Shotyk W (2001) Concentrations and distribution of some polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in an ombrotrophic peat bog profile of Switzerland. Sci Total Environ 267:67–85. doi: 10.1016/S0048-9697(00)00763-4 PubMedCrossRefGoogle Scholar
  4. Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52:1717–1726. doi: 10.1016/S0045-6535(03)00455-7 PubMedCrossRefGoogle Scholar
  5. Cheburkin AK, Shotyk W (1996) An energy-dispersive miniprobe multielement analyzer (EMMA) for direct analysis of Pb and other trace elements in peats. Fresenius J Anal Chem 354:688–691Google Scholar
  6. Chefetz B, Deshmukh AP, Hatcher PG, Guthrie EA (2000) Pyrene sorption by natural organic matter. Environ Sci Technol 34:2925–2930. doi: 10.1021/es9912877 CrossRefGoogle Scholar
  7. Chiou CT, Peters LJ, Freed VH (1979) A physical concept of soil–water equilibria for nonionic organic compounds. Science 206:831–832. doi: 10.1126/science.206.4420.831 PubMedCrossRefGoogle Scholar
  8. Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17:227–231. doi: 10.1021/es00110a009 CrossRefGoogle Scholar
  9. Clymo RS (1983) Peat. In: Gore AJP (ed) Mires: swamp, bog, fen and moor, ecosystems of the world, 4A. Elsevier, New York, pp 159–224Google Scholar
  10. Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond Ser B 303:605–654. doi: 10.1098/rstb.1984.0002 CrossRefGoogle Scholar
  11. Cocozza C, D’Orazio V, Miano TM, Shotyk W (2003) Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Org Geochem 34:49–60. doi: 10.1016/S0146-6380(02)00208-5 CrossRefGoogle Scholar
  12. Conte P, Zena A, Pilidis G, Piccolo A (2001) Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environ Pollut 112:27–31. doi: 10.1016/S0269-7491(00)00101-9 PubMedCrossRefGoogle Scholar
  13. Dahle S, Savinov VM, Matishov GG, Evenset A, Næs K (2003) Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulh of Ob and Yenisei Bay. Sci Total Environ 306:57–71. doi: 10.1016/S0048-9697(02)00484-9 PubMedCrossRefGoogle Scholar
  14. Damman AWH (1978) Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30:480–495. doi: 10.2307/3543344 CrossRefGoogle Scholar
  15. Dreyer A, Radke M, Turunen J, Blodau C (2005) Long-term change of polycyclic aromatic hydrocarbon deposition to peatlands of Eastern Canada. Environ Sci Technol 39:3918–3924. doi: 10.1021/es0481880 PubMedCrossRefGoogle Scholar
  16. Feldmeyer-Christe E (1990) Etude phyto-écologique des tourbières des Franches-Montagnes (canton du Jura et de Berne, Suisse). Matér levé géobot Suisse 66:163 ppGoogle Scholar
  17. Fernández P, Vilanova RM, Grimalt JO (1999) Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes. Environ Sci Technol 33:3716–3722. doi: 10.1021/es9904639 CrossRefGoogle Scholar
  18. Galuszka A (2007) Distribution patterns of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from different forest communities: a case study, south-central Poland. Geoderma 67:1415–1422Google Scholar
  19. IARC (International Agency for Research on Cancer) (1983) IARC monographs on the evaluation of the carcinogenic risk of chemicals to human. Polynuclear aromatic compounds, Part I, Chemical, environmental, and experimental data. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  20. Johnson L, Damman AWH (1993) Decay and its regulation in Sphagnum peatlands. In: Miller NG (ed) Advances in bryology, Band 5, Biology of Sphagnum, pp 249–296Google Scholar
  21. Joray M (1942) L’Étange de la Gruyère, Jura bernois. Étude pollenanalytique et stratigraphique de la tourbière. In: Matériaux pour le levé géobotanique de la Suisse, 25. Hans Huber, BerneGoogle Scholar
  22. Krauss M, Wilcke W, Martius C, Bandeira AG, Garcia MVB, Amelung W (2005) Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environ Pollut 135:143–154. doi: 10.1016/j.envpol.2004.09.012 PubMedCrossRefGoogle Scholar
  23. Martínez-Cortizas A, Pontevedra-Pombal X, Garcia-Rodeja E, Novoa-Munoz JC, Shotyk W (1999) Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284:939–942. doi: 10.1126/science.284.5416.939 PubMedCrossRefGoogle Scholar
  24. Moore P, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific, London, 216 ppGoogle Scholar
  25. Müller K (1982) Die Bielerseesedimente 1878–1978. Ph.D. thesis, University of BerneGoogle Scholar
  26. Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11. doi: 10.1016/j.envpol.2004.04.003 PubMedCrossRefGoogle Scholar
  27. Page DS, Boehm PD, Douglas GS, Bence AE, Burns WA, Mankiewicz PJ (1999) Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: a case study in Prince William Sound, Alaska. Mar Pollut Bull 38:247–260. doi: 10.1016/S0025-326X(98)00142-8 CrossRefGoogle Scholar
  28. Pereira WE, Hostettler FD, Luoma SN, van Geen A, Fuller CC, Anima RJ (1999) Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California. Mar Chem 64:99–113. doi: 10.1016/S0304-4203(98)00087-5 CrossRefGoogle Scholar
  29. Qiao M, Wang C, Huang S, Wang D, Wang Z (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33. doi: 10.1016/j.envint.2005.04.005 PubMedCrossRefGoogle Scholar
  30. Rapaport RA, Eisenreich SJ (1988) Historical atmospheric inputs of high molecular weight chlorinated hydrocarbons to eastern North America. Environ Sci Technol 22:931–941. doi: 10.1021/es00173a011 CrossRefGoogle Scholar
  31. Robertson A (1998) Petroleum hydrocarbons. In AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp 661–716Google Scholar
  32. Sanders G, Jones KC, Hamilton-Taylor J, Dorr H (1995) PCB and PAH fluxes to a dated UK peat core. Environ Pollut 89:17–25. doi: 10.1016/0269-7491(94)00048-I CrossRefGoogle Scholar
  33. Senesi N, Miano TM (1995) The role of abiotic interaction with humic substances on the environmental impact of organic pollutants. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental impact of soil component interaction, natural and anthropogenic organics. CRC Lewis, Boca Raton, pp 311–335Google Scholar
  34. Shotyk W, Cheburkin AK, Appleby PG, Fankhauser A, Kramers JD (1996) Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in a peat bog profile, Jura Mountains, Switzerland. Earth Planet Sci Lett 145:1–7. doi: 10.1016/S0012-821X(96)00197-5 CrossRefGoogle Scholar
  35. Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M et al (1998) History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains Switzerland. Science 281:1635–1640. doi: 10.1126/science.281.5383.1635 PubMedCrossRefGoogle Scholar
  36. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195. doi: 10.1007/s10311-007-0095-0 CrossRefGoogle Scholar
  37. Stevenson FJ (1994) Humus chemistry. genesis, composition, reactions, 2nd edn. Wiley, New YorkGoogle Scholar
  38. Swift RS (1996) Organic matter characterization. In: Sparks DL et al (ed) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America book series 5. Soil Science Society of America, Madison, WI, pp 1018–1020Google Scholar
  39. Thiele-Bruhn S, Brümmer GW (2005) Kinetics of polycyclic aromatic hydrocarbon (PAH) degradation in long-term polluted soils during bioremediation. Plant Soil 275:31–42. doi: 10.1007/s11104-004-0265-9 CrossRefGoogle Scholar
  40. van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev Palaeobot Palynol 25:1–120. doi: 10.1016/0034-6667(78)90040-4 CrossRefGoogle Scholar
  41. Venkatesan MI (1988) Occurrence and possible sources of perylene in marine sediments—a review. Mar Chem 25:1–17. doi: 10.1016/0304-4203(88)90011-4 CrossRefGoogle Scholar
  42. Wardenaar ECP (1987) A new hand tool for cutting peat profiles. Can J Bot 65:1772–1773CrossRefGoogle Scholar
  43. Weber JH (1988) Binding and transport of metals by humic materials. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, Chichester, UK, pp 165–178Google Scholar
  44. Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil—a review. J Plant Nutr Soil Sci 163:229–248. doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6 CrossRefGoogle Scholar
  45. Yang HH, Lee WJ, Chen SJ, Lai SO (1998) PAH emission from various industrial stacks. J Hazard Mater 60:159–174. doi: 10.1016/S0304-3894(98)00089-2 CrossRefGoogle Scholar
  46. Yunker MB, Macdonald RW (2003) Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. Org Geochem 34:1429–1454. doi: 10.1016/S0146-6380(03)00136-0 CrossRefGoogle Scholar
  47. Zaccone C, Cocozza C, Cheburkin AK, Shotyk W, Miano TM (2007a) Highly organic soils as “Witnesses” of anthropogenic Pb, Cu, Zn, and 137Cs inputs during centuries. Water Air Soil Pollut 186:263–271. doi: 10.1007/s11270-007-9482-1 CrossRefGoogle Scholar
  48. Zaccone C, Miano TM, Shotyk W (2007b) Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Org Geochem 38:151–160. doi: 10.1016/j.orggeochem.2006.06.023 CrossRefGoogle Scholar
  49. Zaccone C, Cocozza C, D’Orazio V, Plaza C, Cheburkin AK, Miano TM (2007c) Influence of extractant on quality and trace elements content of peat humic acids. Talanta 73:820–830. doi: 10.1016/j.talanta.2007.04.052 PubMedCrossRefGoogle Scholar
  50. Zaccone C, Said-Pullicino D, Gigliotti G, Miano TM (2008a) Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humic acid fraction. Org Geochem 39:830–838. doi: 10.1016/j.orggeochem.2008.04.018 CrossRefGoogle Scholar
  51. Zaccone C, Cocozza C, Cheburkin AK, Shotyk W, Miano TM (2008b) Distribution of As, Cr, Ni, Rb, Ti and Zr between peat and its humic fraction along an undisturbed ombrotrophic bog profile (NW Switzerland). Appl Geochem 23:25–33. doi: 10.1016/j.apgeochem.2007.09.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. Zaccone
    • 1
    Email author
  • A. Gallipoli
    • 2
  • C. Cocozza
    • 1
  • M. Trevisan
    • 2
  • T. M. Miano
    • 1
  1. 1.Department of Biology and Chemistry of Agro-Forestry and EnvironmentUniversity of BariBariItaly
  2. 2.Istituto di Chimica Agraria ed AmbientaleUniversità Cattolica del Sacro CuorePiacenzaItaly

Personalised recommendations