Plant and Soil

, Volume 316, Issue 1–2, pp 125–137

Evidence for allelopathy as a mechanism of community composition change by an invasive exotic shrub, Chrysanthemoides monilifera spp. rotundata

Regular Article


Chemical interference is increasingly suggested as a mechanism facilitating exotic plant invasion and plant community composition. In order to explore this further, we employed a comprehensive extract-bioassay technique that facilitated detection and demarcation of phytotoxicity, direct allelopathy and indirect allelopathy of bitou bush (Chrysanthemoides monilifera spp. rotundata) compared to an indigenous dominant of the invaded system, acacia (Acacia longifolia var. sophorae). Extracts of the leaves and roots of both species exhibited phytotoxic effects against five indigenous plant species. Evidence for allelopathy between co-evolved indigenous plants was detected between acacia and Isolepis nodosa. Allelopathy between bitou bush and four indigenous plant species was also detected. Therefore we propose that both the acacia and bitou bush have the potential to chemically inhibit the establishment of indigenous plants. Eventual dominance of bitou bush is predicted, however, based on more ubiquitous effects on seedling growth.


Chemical interference competition Exotic plant invasion Non-polar compounds Community structure 


  1. Abe JP, Ishikawa S (1999) Mycorrhizal symbiosis in coastal sand-dune herbaceous vegetation: the ecology of vesicular-arbuscular mycorrhizal fungi. Jpn J Ecol 49:145–150Google Scholar
  2. Amarasekare P (2002) Interference competition and species co-existence. Proc R Soc Lond B Biol Sci 269:2541–2550. doi:10.1098/rspb.2002.2181 CrossRefGoogle Scholar
  3. Bais HP, Park S, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi:10.1016/j.tplants.2003.11.008 PubMedCrossRefGoogle Scholar
  4. Barney JN, Hay AG, Weston LA (2005) Isolation and characterisation of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247–265. doi:10.1007/s10886-005-1339-8 PubMedCrossRefGoogle Scholar
  5. Barr DA (1965) Restoration of coastal dunes after beach mining. J Soil Conserv NSW 21:177–179Google Scholar
  6. Bernhard-Reversat F (1999) The leaching of Eucalyptus hybrids and Acacia auriculiformis leaf litter: laboratory experiments on early decomposition and ecological implications in congolese tree plantations. Appl Soil Ecol 12:251–261. doi:10.1016/S0929-1393(99)00005-0 CrossRefGoogle Scholar
  7. Blum U (1999) Designing laboratory plant-debris soil bioassays: some reflections. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca RatonGoogle Scholar
  8. Chefetz B, Salloum MJ, Deshmukh AP, Hatcher PG (2002) Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis, and thermochemolysis-gas chromatography/mass spectrometry. SSSAJ 66:1159–1171Google Scholar
  9. Copeland C (1984) Preliminary studies of bitou bush ecology: competition for phosphorus and allelopathic potential. In: Love A, Dyason R (eds) Bitou bush and boneseed: proceedings of a conference on Chrysanthemoides monilifera. Port Macquarie, NSWGoogle Scholar
  10. Cumanda J, Marinoni J (1991) New sesquiterpenes from Xanthium catharticum. J Nat Prod 54:460–465. doi:10.1021/np50074a017 CrossRefGoogle Scholar
  11. Dayan FE, Romagni JG, Duke SO (2000) Investigating the mode of actions of natural phytotoxins. J Chem Ecol 26:2079–2094. doi:10.1023/A:1005512331061 CrossRefGoogle Scholar
  12. Deans SG (1991) Evaluation of antimicrobial activity of essential (volatile) oils. In: Linskens HF, Jackson JF (eds) Essential oils and waxes. Springer, BerlinGoogle Scholar
  13. Department of Environment and Conservation (2006) Threat abatement plan for invasion of native plant communities by bitou bush/boneseed (Chrysanthemoides monilifera). Department of Environment and Conservation (NSW), HurstvilleGoogle Scholar
  14. Duke SO, Oliva A (2004) Mode of action of phytotoxic terpenoids. In: Macias FA, Galindo JCG, Molinillo JMG, Cutler HC (eds) Allelopathy: chemistry and mode of action of allelochemicals. CRC, FloridaGoogle Scholar
  15. Einhellig FA (1986) Mechanisms and modes of action of allelochemicals. In: Putnam AR, Tang C (eds) The science of allelopathy. Wiley, New YorkGoogle Scholar
  16. Ens EJ, French K (2008) Exotic woody invader limits the recruitment of three indigenous plant species. Biol Conserv 141:590–595. doi:10.1016/j.biocon.2007.12.012 CrossRefGoogle Scholar
  17. Ens EJ, Bremner JB, French K, Korth J (2008) Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their potential inhibition of native seedling growth. Biological Invasions. doi:10.1007/s10530-008-9232-3
  18. Ernst WHO (1985) Some considerations of and perspectives in coastal ecology. Vegetatio 62:533–545. doi:10.1007/BF00044779 CrossRefGoogle Scholar
  19. Escudero A, Albert MJ, Pita JM, Perez-Garcia F (2000) Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol 148:71–80. doi:10.1023/A:1009848215019 CrossRefGoogle Scholar
  20. Fischer NH (1986) The function of mono and sesquiterpenes as plant germination and growth regulators. In: Putnam AR, Tang C (eds) The science of allelopathy. Wiley, New YorkGoogle Scholar
  21. Franco CMM, Clarke PJ, Tate ME, Oades JM (2000) Hydrophobic properties and chemical characterisation of natural water repellant materials in Australian sands. J Hydrol (Amst) 231–232:47–58. doi:10.1016/S0022-1694(00)00182-7 CrossRefGoogle Scholar
  22. Gonzalez L, Souto XC, Reigosa MJ (1995) Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition. For Ecol Manag 77:53–63CrossRefGoogle Scholar
  23. Gross D (1975) Growth regulating substances of plant origin. Phytochemistry 14:2105–2112. doi:10.1016/S0031-9422(00)91080-X CrossRefGoogle Scholar
  24. Harper JL (1977) Population biology of plants. Academic, LondonGoogle Scholar
  25. Hattenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. doi:10.1016/S0169-5347(00)01861-9 PubMedCrossRefGoogle Scholar
  26. Hazelton PA, Tille PJ (1993) Soil landscapes of the Wollongong-Port Hacking 1:100 000 sheets (map and report). Soil Conservation Service NSW, SydneyGoogle Scholar
  27. Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39. doi:10.1023/A:1026208327014 CrossRefGoogle Scholar
  28. Houghton PJ, Raman A (1998) Laboratory handbook for the fractionation of natural extracts. Chapman and Hall, LondonGoogle Scholar
  29. Hughes S (1998) Potential for recovery of native plant communities after the removal of bitou bush. Honours Thesis, University of New South Wales, KensingtonGoogle Scholar
  30. Inderjit (2001) Soil: environmental effects on allelochemical activity. Agron J 93:79–84Google Scholar
  31. Inderjit, Nilsen E (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238CrossRefGoogle Scholar
  32. Inderjit, Weiner J (2001) Plant allelochemical interference or soil chemical ecology? Perspect Plant Ecol Evol Syst 4:3–12. doi:10.1078/1433-8319-00011 CrossRefGoogle Scholar
  33. Inderjit, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses. J Chem Ecol 26:2111–2118. doi:10.1023/A:1005516431969 CrossRefGoogle Scholar
  34. Inderjit, Weston LA, Duke SO (2006) Challenges, achievements and opportunities in allelopathy research. Journal of Plant Interactions 1:69–81Google Scholar
  35. Iqbal Z, Hiradate S, Noda A, Isojima S, Fujii Y (2002) Allelopathy of buckwheat: assessment of allelopathic potential of extract of aerial parts of buckwheat and identification of fagomine and other related alkaloids as allelochemicals. Weed Biology and Management 2:110–115. doi:10.1046/j.1445-6664.2002.00055.x CrossRefGoogle Scholar
  36. Karamanoli K (2002) Secondary metabolites as allelochemicals in plant defense against microorganisms of the phyllosphere. In: Reigosa MJ, Pedrol N (eds) Alellopathy: molecules to ecosystems. Science, Enfield, USAGoogle Scholar
  37. Keeley JE (1988) Allelopathy. Ecology 69:292–293. doi:10.2307/1943186 CrossRefGoogle Scholar
  38. Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280. doi:10.1007/BF02059809 CrossRefGoogle Scholar
  39. Levine JM, Vila M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proc R Soc Lond B Biol Sci 270:775–781. doi:10.1098/rspb.2003.2327 CrossRefGoogle Scholar
  40. Lin C, Owen SM, Penuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:51–960. doi:10.1016/j.soilbio.2006.11.007 CrossRefGoogle Scholar
  41. Logan VS, Clarke PJ, Allaway WG (1989) Mycorrhizas and root attributes of plants of coastal sand-dunes of New South Wales. Aust J Plant Physiol 16:141–146CrossRefGoogle Scholar
  42. Melin E, Krupa S (1971) Studies on ectomycorrhizae of pine II. Growth inhibition of mycorrhizal fungi by volatile organic consituents of Pinus sylvestris (Scots Pine) roots. Physiol Plant 25:337–340. doi:10.1111/j.1399-3054.1971.tb01451.x CrossRefGoogle Scholar
  43. Molisch H (1937) Der einfluss einer Pflanze auf die andere-allelopathie. G. Fischer, Jena, GermanyGoogle Scholar
  44. Muller CH (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93:332–351. doi:10.2307/2483447 CrossRefGoogle Scholar
  45. Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203. doi:10.1007/s10886-005-4256-y PubMedCrossRefGoogle Scholar
  46. Pomilio AB, Leicach SR, Grass MY, Ghersa CM, Santoro M, Vitale AA (2000) Constituents of the root exudate of Avena fatua grown under far-infrared-enriched light. Phytochem Anal 11:304–308 doi:10.1002/1099-1565(200009/10)11:5<304::AID-PCA531>3.0.CO;2-G CrossRefGoogle Scholar
  47. Reigosa MJ, Souto C, Gonzalez L (1996) Allelopathic research: methodological, ecological and evolutionary aspects. In: Narwal SS, Tauro P (eds) Allelopathy: field observations and methodology. Scientific, Jodphur, pp 213–231Google Scholar
  48. Roper MM (2005) Managing soils to enhance the potential for bioremediation of water repellency. Aust J Soil Res 43:803–810. doi:10.1071/SR05061 CrossRefGoogle Scholar
  49. Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739. doi:10.1111/j.1365-2745.2006.01124.x CrossRefGoogle Scholar
  50. Scher JM, Speakman J, Zapp J, Becker H (2004) Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S. F. Gray. Phytochemistry 65:2583–2588. doi:10.1016/j.phytochem.2004.05.013 PubMedCrossRefGoogle Scholar
  51. Souto C, Pellissier F, Chiapusio G (2000) Allelopathic effects of humus phenolics on growth and respiration of mycorrhizal fungi. J Chem Ecol 26:2015–2023. doi:10.1023/A:1005551912405 CrossRefGoogle Scholar
  52. SPSS (2003) Version 13. SPSS, ChicagoGoogle Scholar
  53. Stowe LG (1979) Allelopathy and its influence on the distribution of plants in an Illinois old-field. J Ecol 67:1065–1085. doi:10.2307/2259228 CrossRefGoogle Scholar
  54. Tang C (1986) Continuous trapping techniques for the study of allelochemicals from higher plants. In: Putnam AR, Tang C (eds) The science of allelopathy. Wiley, New YorkGoogle Scholar
  55. Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 164:S93–S102. doi:10.1086/374190 CrossRefGoogle Scholar
  56. Vranjic JA, Woods MJ, Barnard J (2000) Soil-mediated effects on germination and seedling growth of coastal wattle (Acacia sophorae) by the environmental weed, bitou bush (Chrysanthemoides monilifera ssp. rotundata). Austral Ecology 25:445–453. doi:10.1046/j.1442-9993.2000.01086.x Google Scholar
  57. Wardle DA, Nilsson M, Gallet C, Zackrisson O (1998) An ecosystem-level perspective of allelopathy. Biol Rev Camb Philos Soc 73:305–319. doi:10.1017/S0006323198005192 CrossRefGoogle Scholar
  58. Williams RD, Hoagland RE (1982) The effects of naturally occurring phenolic compounds on seed germination. Weed Sci 30:206–212Google Scholar
  59. Williamson M (1996) Biological invasions. Chapman and Hall, LondonGoogle Scholar
  60. Williamson GB, Richardson D (1988) Bioassays for allelopathy: measuring treatment responses with independent controls. J Chem Ecol 14:181–187. doi:10.1007/BF01022540 CrossRefGoogle Scholar
  61. Yokouchi Y (1991) Analysis of monoterpene hydrocarbons in the atmosphere. In: Linskens HF, Jackson JF (eds) Essential oils and waxes. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute for Conservation Biology and Law, Faculty of ScienceUniversity of WollongongWollongongAustralia
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of WollongongWollongongAustralia
  3. 3.The Australian National UniversityCanberraAustralia

Personalised recommendations