Plant and Soil

, Volume 321, Issue 1–2, pp 385–408

Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils

Review Article

Abstract

Plant-assisted bioremediation or phytoremediation holds promise for in situ treatment of polluted soils. Enhancement of phytoremediation processes requires a sound understanding of the complex interactions in the rhizosphere. Evaluation of the current literature suggests that pollutant bioavailability in the rhizosphere of phytoremediation crops is decisive for designing phytoremediation technologies with improved, predictable remedial success. For phytoextraction, emphasis should be put on improved characterisation of the bioavailable metal pools and the kinetics of resupply from less available fractions to support decision making on the applicability of this technology to a given site. Limited pollutant bioavailability may be overcome by the design of plant–microbial consortia that are capable of mobilising metals/metalloids by modification of rhizosphere pH (e.g. by using Alnus sp. as co-cropping component) and ligand exudation, or enhancing bioavailability of organic pollutants by the release of biosurfactants. Apart from limited pollutant bioavailability, the lack of competitiveness of inoculated microbial strains (in particular degraders) in field conditions appears to be another major obstacle. Selecting/engineering of plant–microbial pairs where the competitiveness of the microbial partner is enhanced through a “nutritional bias” caused by exudates exclusively or primarily available to this partner (as known from the “opine concept”) may open new horizons for rhizodegradation of organically polluted soils. The complexity and heterogeneity of multiply polluted “real world” soils will require the design of integrated approaches of rhizosphere management, e.g. by combining co-cropping of phytoextraction and rhizodegradation crops, inoculation of microorganisms and soil management. An improved understanding of the rhizosphere will help to translate the results of simplified bench scale and pot experiments to the full complexity and heterogeneity of field applications.

Keywords

Bioremediation Phytoremediation Rhizosphere Rhizosphere manipulation Organic pollutants Metals 

References

  1. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224CrossRefGoogle Scholar
  2. Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889CrossRefGoogle Scholar
  3. Aguirre de Cárcer D, Martin M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223CrossRefGoogle Scholar
  4. Anderson TA, Coats JE (1994) Bioremediation through rhizosphere technology. ACS Symp Ser:563. Am Chem Soc, Washington, DCGoogle Scholar
  5. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636CrossRefGoogle Scholar
  6. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362PubMedCrossRefGoogle Scholar
  7. Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allaway WG (1988) Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma 147:149–161CrossRefGoogle Scholar
  8. Azaizeh H, Gowthaman S, Terry N (1997) Microbial selenium volatilisation in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26:666–672Google Scholar
  9. Azaizeh HA, Salhani N, Sebesvari Z, Emons H (2003) The potential of rhizosphere microbes isolated from a constructed wetland to biomethylate selenium. J Environ Qual 32:55–62PubMedCrossRefGoogle Scholar
  10. Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils. Using crops of metal-accumulating plants: a feasibility study. In: Hinchee RE, Olfenbuttel RF (eds) In situ bioreclamation. Butterworth-Heinemann, Stoneham, MA, p 539Google Scholar
  11. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384PubMedCrossRefGoogle Scholar
  12. Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). J Plant Nutr Soil Sci 169:516–522CrossRefGoogle Scholar
  13. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE et al (2001) Characterization of plant growth-prompting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652PubMedCrossRefGoogle Scholar
  14. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S et al (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  15. Bento FM, de Oliveira Camargo FA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel soil. Microbiol Res 160:249–255CrossRefGoogle Scholar
  16. Berthelsen BO, Lamble GM, MacDowell AA, Nicholson DG (2000) Analysis of metal speciation and distribution in symbiotic fungi (ectomycorrhiza) studied by micro X-ray absorption spectroscopy and X-ray fluorescence. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere.. CRC, Boca Raton, USA, pp 149–164Google Scholar
  17. Blute NK, Brabander DJ, Hemond HF, Sutton SR, Newville MG, Rivers ML (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environ Sci Technol 38:6074–6077PubMedCrossRefGoogle Scholar
  18. Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace. Nat Biotechnol 15:127–128PubMedCrossRefGoogle Scholar
  19. Bradshaw AD, Johnson MS (1992) Revegetation of metalliferous mine waste: the range of practical techniques used in Western Europe. In: Minerals, metals and the environment. Institute of Mining and Mettalurgy, London, 491 pGoogle Scholar
  20. Breckle S-W, Kahle H (1992) Effect of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.). Vegetatio 101:43–53CrossRefGoogle Scholar
  21. Brix H, Sorrell BK, Schierup H-H (1996) Gas fluxes by in situ convective flow in Phragmites australis. Aquat Bot 54:151–163CrossRefGoogle Scholar
  22. Bromilow RH, Chamberlain K (1995) Principles governing uptake and transport of chemicals. In: Trapp S, McFarlane JC (eds) Plant contaminations, modeling and simulation of organic chemical processes. CRC, Boca Raton, FL, USA, pp 37–68Google Scholar
  23. Brown SL, Chaney RL, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soil. J Environ Qual 23:1151-1157CrossRefGoogle Scholar
  24. Buchet JP, Lauwerys R (1981) Evaluation of exposure to inorganic arsenic in man. Analytical techniques for heavy metals in biological fluids. Elsevier, Amsterdam, pp 75–89Google Scholar
  25. Burd GI, Dixon DC, Click BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668PubMedGoogle Scholar
  26. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefGoogle Scholar
  27. Burken JB, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385CrossRefGoogle Scholar
  28. Cathala N, Salsac L (1975) Absorption du cuivre par les racines de mais (Zea mays L.) et de tournesol (Helianthus annuus L.). Plant Soil 42:65–83CrossRefGoogle Scholar
  29. Chaîneau CH, Rougeux G, Yéprémian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497CrossRefGoogle Scholar
  30. Chaney RL (1983) Plant uptake of organic waste constituents. In: Parr et al (ed) Land treatment of hazardous wastes. Noyes Data, Park Ridge, NJ, pp 50–76Google Scholar
  31. Chiapusio G, Pujol S, Toussaint ML, Badot PM, Binet P (2007) Phenanthrene toxicity and dissipation in the rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils. Plant Soil 294:103–112CrossRefGoogle Scholar
  32. Child R, Miller CD, Liang Y, Sims RC, Anderson AJ (2007) Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere. J Environ Qual 36:1260–1265PubMedCrossRefGoogle Scholar
  33. Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A et al (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29PubMedCrossRefGoogle Scholar
  34. Colpaert JV, Asche JA (1993) The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol 123:325–333CrossRefGoogle Scholar
  35. Cotter-Howells JD, Champness PE, Charnock JM, Pattrick RAD (1994) Identification of pyromorphite in mine-waste contaminated soils by ATEM and EXAFS. Eur J Soil Sci 45:393–402CrossRefGoogle Scholar
  36. Cotter-Howells J, Caporn S (1996) remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342CrossRefGoogle Scholar
  37. Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of lead-phosphorus grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Min Mag (Lond) 63:777–789CrossRefGoogle Scholar
  38. Curl EA, Truelove B (1986) The rhizophere. Advanced series in agricultural science 15. Springer, Berlin, GermanyGoogle Scholar
  39. Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorphenol by Sphinobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870PubMedCrossRefGoogle Scholar
  40. Degryse F, Verma VK, Smolders E (2007) Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin buffered solutions and in soil. Plant Soil 306:69–84CrossRefGoogle Scholar
  41. Demnerova K, Mackova M, Spevakova V, Beranova K, Kochankova L, Lovecka P et al (2005) Two approaches to biological decontamination of groundwater and soil polluted by aromatics—characterization of microbial populations. Int Microbiol 8:205–211PubMedGoogle Scholar
  42. De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D et al (1999a) Rhizosphere bacteria enhance selenium accumulation and volatilisation by Indian Mustard. Plant Physiol 119:563–573Google Scholar
  43. De Souza MP, Huang CPA, Chee N, Terry N (1999b) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263PubMedCrossRefGoogle Scholar
  44. Di Gregorio S, Lampis S, Malorgio F, Petruzzelli G, Pezzarossa B, Vallini G (2006) Brassica juncea can improve selenite and selenate abatement in selenium contaminated soils through the aid of its rhizosperic bacterial population. Plant Soil 285:233–244CrossRefGoogle Scholar
  45. Donnelly PK, Hedge RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988CrossRefGoogle Scholar
  46. Dos Santos Utmazian MN, Schweiger P, Sommer P, Gorfer M, Strauss J, Wenzel WW (2007) Influence of Cadophora finlandica and other microbial treatments on cadmium and zinc uptake in willows grown on polluted soil. Plant Soil Environ 53:158–166Google Scholar
  47. Doyle MO, Otte ML (1997) Organism-induced accumulation of iron. zinc and arsenic in wetland soils. Environ Pollut 96:1–11PubMedCrossRefGoogle Scholar
  48. Dzantor EK (2007) Phytoremediation: the state of rhizosphere “engineering” for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232CrossRefGoogle Scholar
  49. Dziejowski JE, Rimmer A, Steenhuis TS (1997) Preferential movement of oxygen in soils. Soil Sci Soc Am J 6:1607–1610Google Scholar
  50. Edvantoro BB, Naidu R, Megharaj, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217CrossRefGoogle Scholar
  51. Fein JB, Martin AM, Wightman PG (2001) Metal adsorption onto bacterial surfaces: development of a predictive approach. Geochim Cosmochim Acta 65:4267–4273CrossRefGoogle Scholar
  52. Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279PubMedCrossRefGoogle Scholar
  53. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278PubMedCrossRefGoogle Scholar
  54. Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Štipek K, Fischerova Z et al (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014PubMedCrossRefGoogle Scholar
  55. Flessa H, Fischer WR (1992) Plant-induced changes in the redox potential of rice rhizospheres. Plant Soil 143:55–60CrossRefGoogle Scholar
  56. Fletcher JS, Hedge RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016CrossRefGoogle Scholar
  57. Fomina MA, Alexander IJ, Copaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866CrossRefGoogle Scholar
  58. Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K et al (2003) Preparation of plants containing bacterial enzyme for the degradation of polychlorinated biphenyls. Fresenius Environ Bull 12:309–313Google Scholar
  59. Frankenberger WT, Karlson U (1994) Soil-management factors affecting volatilization of selenium from dewatered sediments. Geomicrobiol J 12:265–278CrossRefGoogle Scholar
  60. Frankenberger WT, Arshad M (2002) Volatilisation of arsenic. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380Google Scholar
  61. Gadd GM (2004) Microbial influence on metal mobility and application to bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  62. Gao S, Burau RG (1997) Environmental factors affecting rates of arsine evolution from mineralization of arsenicals in soil. J Environ Qual 26:753–763CrossRefGoogle Scholar
  63. Gerard E, Echevarria G, Sterckeman T, Morel J-L (2000) Cadmium availability to three plants species varying in cadmium accumulation pattern. J Environ Qual 29:1117–1123CrossRefGoogle Scholar
  64. Gilbertson AW, Fitch MW, Burken JG, Wood TK (2007) Transport and survival of GFP-tagged root-colonizing microbes: implications for rhizodegradation. Eur J Soil Biol 43:224–232CrossRefGoogle Scholar
  65. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  66. Gove B, Hutchinson JJ, Young SD, Craigon J, McGrath SP (2002) Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens. Int J Phytorem 4:267–281CrossRefGoogle Scholar
  67. Gunderson JJ, Knight JD, Van Rees KCJ (2007) Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil. J Environ Qual 36:927–934PubMedCrossRefGoogle Scholar
  68. Hammer D, Keller C, McLaughlin MJ, Hamon RE (2006) Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: results from an isotopic dilution study. Environ Pollut 143:407–415PubMedCrossRefGoogle Scholar
  69. Hamon RE, McLaughlin MJ (1999) Use of the hyperaccumulator Thlaspi caerulescens for bioavailable contaminant striping. In: Wenzel WW et al (eds) Proc 5th International Conference on the Biogeochemistry of Trace Elements. Vienna, Austria, pp 908–909Google Scholar
  70. Harmsen J, Rulkens W, Eijsackers H (2005) Bioavailability: concept for understanding or tool for predicting. Land Contam Recl 13:161–171Google Scholar
  71. Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment. Plant Soil 189:303–319CrossRefGoogle Scholar
  72. He LM, Neu MP, Vanderberg LA (2000) Bacillus lichenformis γ-glutamyl exopolymer: physicochemical characterization and U(VI) interaction. Environ Sci Technol 34:1694–1701CrossRefGoogle Scholar
  73. He Y, Xu J, Tang C, Wu Y (2005) Facilitation of pentachlorophenol degradation in the rhizosphere of ryegrass (Lolium perenne L.). Soil Biol Biochem 37:2017–2024CrossRefGoogle Scholar
  74. He Y, Xu J, Ma Z, Wng H, Wu Y (2007) Profiling of PLFA: implications for nonlinear spatial gradient of PCP degradation in the vicinity of Lolium perenne L. roots. Soil Biol Biochem 39:1121–1129CrossRefGoogle Scholar
  75. Heaton ACP, Rugh CL, Wang NJ, Meagher RB (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509CrossRefGoogle Scholar
  76. Hedge RS, Fletcher JS (1996) Influence of plant growth stage and season on the release of root phenolics by mulberry as related to the development of phytoremediation technology. Chemosphere 32:2471–2479CrossRefGoogle Scholar
  77. Himmelbauer M, Puschenreiter M, Schnepf A, Loiskandl W, Wenzel WW (2005) Root morphology of Thlaspi goesingense Halacsy grown on a serpentine soil. J Plant Nutr Soil Sci 168:138–144CrossRefGoogle Scholar
  78. Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil–root interface. In: Violante A, Huang PM, Gadd GM (eds) Biophysic-chemical processes of heavy metals and metalloids in soil environments. Wiley, Hoboken, USA, pp 267–311Google Scholar
  79. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303PubMedCrossRefGoogle Scholar
  80. Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248:43-59CrossRefGoogle Scholar
  81. Hubert C, Shen Y, Voordouw G (2005) Changes in soil microbial community composition induced by cometabolism of toluene and trichloroethylene. Biodegradation 16:11–22PubMedCrossRefGoogle Scholar
  82. Hutchinson JJ, Young SD, McGrath SP, West HM, Black CR, Baker AJM (2000) Determining uptake of “non-labile” soil cadmium by Thlaspi caerulescens using isotopic dilution techniques. New Phytol 146:453–460CrossRefGoogle Scholar
  83. Hyman MR, Russell SA, Ely RL, Williamson KJ, Arp DJ (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in co-metabolism of trichloroethylene by Nitrosomonas europaea. Appl Environ Microbiol 61:1480–1487PubMedGoogle Scholar
  84. Idris R, Trifinova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677PubMedCrossRefGoogle Scholar
  85. Jankong P, Visoottiviseth P, Khokiattiwong S (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68:1906-1912PubMedCrossRefGoogle Scholar
  86. Johnson DW, Benesch JA, Gustin MS, Schorran DS, Lindberg SE, Coleman JS (2003) Experimental evidence against diffusion control of Hg evasion from soils. Sci Total Environ 304:175–184PubMedCrossRefGoogle Scholar
  87. Johnson DL, Maguire KL, Anderson DR, McGrath SP (2004) Enhanced dissipation of chrysene in planted soil: the impact of rhizobial inoculum. Soil Biol Biochem 36:33–38CrossRefGoogle Scholar
  88. Johrdal JL, Foster L, Schnoor JL, Alvarez PJJ (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16:1318–3121CrossRefGoogle Scholar
  89. Joner EJ, leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Poll 142:34-38CrossRefGoogle Scholar
  90. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480CrossRefGoogle Scholar
  91. Kaimi E, Mukaidani T, Tamaki M (2007) Effect of rhizodegradation in diesel-contaminated soil under different soil condition. Plant Prod Sci 10:105–111CrossRefGoogle Scholar
  92. Kamath R, Schnoor JL, Alvarez PJJ (2004) Effect of root-derived substrates on the expression of nah-lux genes in Pseudomonas fluorescens HK44: implications for PAH biodegradation in the rhizophsere. Environ Sci Technol 38:1740–1745PubMedCrossRefGoogle Scholar
  93. Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143CrossRefGoogle Scholar
  94. Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK et al (2000) Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use of NTA and sulphur amendments. Environ Sci Technol 34:1778–1783CrossRefGoogle Scholar
  95. Kim J, Kang S-H, Min K-A, Cho-K-S, Lee I-S (2006) Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. J Environ Sci Health Part A 41:2503-2516CrossRefGoogle Scholar
  96. Kechavarzi C, Pettersson K, Leeds-Harrisson P, Ritchie L, Ledin S (2007) Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ Pollut 145:68–74PubMedCrossRefGoogle Scholar
  97. Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81CrossRefGoogle Scholar
  98. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15PubMedCrossRefGoogle Scholar
  99. Lasat MM, Baker AJM, Kochian LV (1996) Physiological Characterisation of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722PubMedGoogle Scholar
  100. Lee D-H, Cody RD, Kim D-J, Choi S (2002) Effect of soil texture on surfactant-based remediation of hydrophobic organic-contaminated soil. Environ Int 27:681–688PubMedCrossRefGoogle Scholar
  101. Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioeng 95:399–403PubMedCrossRefGoogle Scholar
  102. Lehto NJ, Davison W, Zhang H, Tych W (2006) Theoretical comparison of how soil processes affect uptake of metals by diffusive gradients in thinfilms and plants. J Environ Qual 35:1903–1913PubMedCrossRefGoogle Scholar
  103. Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8PubMedCrossRefGoogle Scholar
  104. Leyval C, Binet P (1998) Effect of poyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. J Environ Qual 27:402–407CrossRefGoogle Scholar
  105. Leyval C, Joner EJ (2000) Bioavailability of metals in the mycorhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, USA, pp 165–185Google Scholar
  106. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  107. Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853PubMedCrossRefGoogle Scholar
  108. Lin Q, Wang Z, Ma S, Chen Y (2006) Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci Total Environ 368:814–822PubMedCrossRefGoogle Scholar
  109. Liste H-H, Felgentreu D (2006) Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl Soil Ecol 31:43–52CrossRefGoogle Scholar
  110. Liste H-H, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420PubMedCrossRefGoogle Scholar
  111. Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187–192PubMedCrossRefGoogle Scholar
  112. Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoem 4:101–115CrossRefGoogle Scholar
  113. Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60CrossRefGoogle Scholar
  114. Luthy RG, Aiken GR, Brusseau ML, Cunnningham SD, Gschwend PM, Pignatello JJ et al (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347CrossRefGoogle Scholar
  115. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego, CAGoogle Scholar
  116. Marschner P, Jentschke G, Godbold DL (1998) Cation exchange capacity and lead soption in ectomycorrhizal fungi. Plant Soil 205:93–98CrossRefGoogle Scholar
  117. Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141CrossRefGoogle Scholar
  118. Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2004) Response of excluder, indicator and hyperaccumulator plants to nickel availability in soils. Aust J Soil Res 42:933–938CrossRefGoogle Scholar
  119. McBride NM (1989) Reactions controlling heavy metal solubility in soils. Adv Soil Sci 10:1–56Google Scholar
  120. McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214CrossRefGoogle Scholar
  121. McLaughlin MJ, Smolders E, Merckx R (1998) Soil–root interface: physicochemical processes. In: Huang PM, Adriano DC, Logan TJ, Checkai RT (eds) Soil chemistry and ecosystem health. Soil Science Society of America, Madison, Wisconsin, USA, pp 233–277 Special Publication no52Google Scholar
  122. Meagher RE, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Microtechnol 32:502–513CrossRefGoogle Scholar
  123. Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis , Boca Raton, USA, pp 201–220Google Scholar
  124. Meharg AA, Cairney JWG (2000) Extomycorrhizas—extending the capabilities of rhizosphere remediation. Soil Biol Biochem 32:1475–1484CrossRefGoogle Scholar
  125. Mehmannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated bipheyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 37:955–963CrossRefGoogle Scholar
  126. Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132:187–196Google Scholar
  127. Meyer J, Schmidt A, Michalke K, Hensel R (2007) Volatilisation of metals and metalloids by the microbial population of an alluvial soil. Syst Appl Microbiol 30:229–238PubMedCrossRefGoogle Scholar
  128. Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374CrossRefGoogle Scholar
  129. Moore LW, Chilton WS, Canfield ML (1997) Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Appl Environ Microbiol 63:201-207PubMedGoogle Scholar
  130. Moorehead DL, Westerfield MM, Zak JC (1998) Plants retard litter decay in a nutrient-limited soil: a case of exploitative competition. Oecologia 113:530–536CrossRefGoogle Scholar
  131. Moreno FN, Anderson CWN, Stewart RB, Rosinson BH, Nomura R, Ghomshei M et al (2005) Effect of thioligands on plant Hg accumulation and volatilization from mercury-contaminated mine tailings. Plant Soil 275:233–246CrossRefGoogle Scholar
  132. Muratova AY, Turkovskaya OV, Hübner T, Kuschk P (2003) Studies of the efficacy of alfalfa and reed in the phytoremediation of hydrocarbon-polluted soil. Appl Biochem Microbiol 39:599–605CrossRefGoogle Scholar
  133. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153PubMedCrossRefGoogle Scholar
  134. Neubauer U, Furrer G, Schulin R (2002) Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III). Eur J Soil Sci 53:45–55CrossRefGoogle Scholar
  135. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230PubMedCrossRefGoogle Scholar
  136. Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 17:5225–5232CrossRefGoogle Scholar
  137. Olson PE, Castro A, Joern M, DuTeau NM, Pilon-Smits EAH, Reardon KF (2007) Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. J Environ Qual 36:1461–1469PubMedCrossRefGoogle Scholar
  138. Olsson PA, Chalot M, Baath E, Finlay RD, Söderström B (1996) Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiol Ecol 21:77–86CrossRefGoogle Scholar
  139. Pawlowska TE, Chaney RL, Chin M, Charvat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl Environ Microbiol 66:2526–2530PubMedCrossRefGoogle Scholar
  140. Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF et al (2000) The molecular physiology of heavy metal transporter in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960PubMedCrossRefGoogle Scholar
  141. Phillips LA, Greer CW, Germida JJ (2006) Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biol Biochem 38:2823–2833CrossRefGoogle Scholar
  142. Prohaska T, Pfeffer M, Yulipan M, Stingeder G, Mentler A, Wenzel WW (1999) Speciation of arsenic of liquid and gaseous emission from soil in a microcosmos experiment by liquid and gas chromatography with inductively coupled plasma mass spectrometer (ICP–MS) detection. Fresenius J Anal Chem 364:467–470CrossRefGoogle Scholar
  143. Puschenreiter M, Stöger G, Lombi E, Horak O, Wenzel WW (2001) Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulphate. J Plant Nutr Soil Sci 164:615–621CrossRefGoogle Scholar
  144. Read DB, Bengough AG, Gregory PJ, Crawford JW, Robinson D, Scrimgeour CM et al (2003) Plant roots release phospholipids surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326CrossRefGoogle Scholar
  145. Reddy KR, Patrick WH Jr, Lindau CW (1989) Nitrification—denitrification at the plant root–sediment interface in wetlands. Limnol Oceanogr 34:1004–1013CrossRefGoogle Scholar
  146. Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112PubMedCrossRefGoogle Scholar
  147. Rentz JA, Alvarez PJJ, Schnoor JL (2005) Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates. Implications for phytoremediation. Environ Pollut 136:477–484PubMedCrossRefGoogle Scholar
  148. Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656PubMedCrossRefGoogle Scholar
  149. Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85:237–251CrossRefGoogle Scholar
  150. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow-poplar for mercury phytoremediation. Nat Biotechnol 33:616–621Google Scholar
  151. Ryslava E, Krejcik Z, Macek T, Novakova H, Demnerova K, Mackova M (2003) Study of PCB degradation in real contaminated soil. Fresenium Environ Bull 12:296–301Google Scholar
  152. Sabljic A, Piver WT (1992) Quantitative modelling of environmental fate and impact of commercial chemicals. Environ Toxicol Chem 11:961–972CrossRefGoogle Scholar
  153. Saiki Y, Habe H, Yuuki T, Ikeda M, Yoshida T, Nojiri H et al (2003) Rhizoremediation of dioxine-like compounds by a recombinant Rhizobium tropici strain expressing carbazole 1,9a-dioxigenase constitutively. Biosci Biotechnol Biochem 67:1144–1148PubMedCrossRefGoogle Scholar
  154. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474PubMedCrossRefGoogle Scholar
  155. Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 189–200Google Scholar
  156. Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivila T, Haahtela K, Romantschuk M et al (1998) Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine ectomycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126CrossRefGoogle Scholar
  157. Sarand I, Timonen S, Koivula T, Peltola R, Haahtela K, Sen R et al (1999) Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J Appl Microbiol 86:817–826PubMedCrossRefGoogle Scholar
  158. Schneiker S, Keller M, Droege M, Lanka E, Puller A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere alfalfa. Nucleic Acids Res 29:5169–5181PubMedCrossRefGoogle Scholar
  159. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323CrossRefGoogle Scholar
  160. Schwartz C, Morel JL, Saumier S, Whiting SN, Baker AJM (1999) Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208:103–115CrossRefGoogle Scholar
  161. Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35CrossRefGoogle Scholar
  162. Sell J, Kayser A, Schulin R, Brunner I (2005) Contribution of ectomycorrhizal fungi to cadmium uptake of poplars and willows from a heavily polluted soil. Plant Soil 277:245-253CrossRefGoogle Scholar
  163. Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818CrossRefGoogle Scholar
  164. Seuntjens P, Nowack B, Schulin R (2004) Root-zone modelling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 265:61–73CrossRefGoogle Scholar
  165. Sheng X-F, Xia J-J (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042PubMedCrossRefGoogle Scholar
  166. Shenker M, Fan TWM, Crowley DE (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30:2091–2098PubMedCrossRefGoogle Scholar
  167. Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79CrossRefGoogle Scholar
  168. Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489PubMedCrossRefGoogle Scholar
  169. Singer CA, Smith D, Jury WA, Hathuc K, Crowley DE (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ Toxicol Chem 22:1998–2004PubMedCrossRefGoogle Scholar
  170. Simonich SL, Hites RA (1995) organic pollutant accumulation in vegetation. Environ Sci Technol 29:2905–2914CrossRefGoogle Scholar
  171. Smith VH, Graham DW, Cleland DD (1998) Application of resource-ratio theory to hydrocarbon biodegradation. Environ Sci Technol 32:3386–3395CrossRefGoogle Scholar
  172. Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120PubMedCrossRefGoogle Scholar
  173. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Engineer 18:647–658CrossRefGoogle Scholar
  174. Terry N, Zayed AM (1998) Phytoremediation of selenium. In: Frankenberger WT, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker, New York, pp 633–657Google Scholar
  175. Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228PubMedCrossRefGoogle Scholar
  176. Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G et al (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81PubMedCrossRefGoogle Scholar
  177. Turpeinen R, Pantsar-Kallio M, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145PubMedCrossRefGoogle Scholar
  178. Unterbrunner R, Wieshammer G, Hollender U, Felderer B, Wieshammer-Zivkovic M, Puschenreiter M et al (2007) Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant Soil 300:117–126CrossRefGoogle Scholar
  179. Uren NC (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizophere. Marcel Dekker, New York, USA, pp 19–40Google Scholar
  180. Urum K, Pekdemir T, Copur M (2004) Surfactants treatment of crude oil contaminated soil. J Colloid Interface Sci 276:456–464PubMedCrossRefGoogle Scholar
  181. Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J et al (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24:197–211PubMedCrossRefGoogle Scholar
  182. Van Dillewijn P, Caballero A, Paz JA, Gonzales-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383PubMedCrossRefGoogle Scholar
  183. Van Miegroet H, Cole DW (1984) The impact of nitrification on soil acidification and cation leaching in red alder ecosystems. J Environ Qual 13:586–590CrossRefGoogle Scholar
  184. Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice. Environ Pollut 150:31–40Google Scholar
  185. Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232CrossRefGoogle Scholar
  186. Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337CrossRefGoogle Scholar
  187. Wang FY, Lin XG, Yin R (2007a) Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia (Jena) 51:99–109CrossRefGoogle Scholar
  188. Wang FY, Lin XG, Yin R (2007b) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb, and Cd by Elsholtzia splendens—a field case. Environ Pollut 147:248–255PubMedCrossRefGoogle Scholar
  189. Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA III et al (2007c) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853PubMedCrossRefGoogle Scholar
  190. Wenzel WW, Adriano DC, Salt D, Smith R (1999) Phytoremediation: a plant–microbe-based remediation system. In: Adriano DC, Bollag J-M, Frankenberger WT Jr, Sims RC (eds) Agronomy Monograph 37, Madison, USA, pp 457–508Google Scholar
  191. Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003a) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and tolerant plants on serpentine soil. Environ Pollut 123:131–138PubMedCrossRefGoogle Scholar
  192. Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003b) Chelate assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96CrossRefGoogle Scholar
  193. Wenzel WW, Lombi E, Adriano DC (2004) Root and rhizosphere processes in metal hyperaccumulation and phytoremediation technology. In: Prasad MNV (ed) Heavy metals in plants: from biomolecules to ecosystems. Springer, Berlin, pp 313–344Google Scholar
  194. Whitfield L, Richards AJ, Rimmer DL (2004) Effects of mycorrhizal colonization on Thymus polytrichus from heavy-metal-contaminated sites in northern England. Mycorrhiza 14:47–54PubMedCrossRefGoogle Scholar
  195. Wieshammer G, Unterbrunner R, Bañares García T, Zivkovic MF, Puschenreiter M, Wenzel WW (2007) Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil 298:255–264CrossRefGoogle Scholar
  196. Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230PubMedCrossRefGoogle Scholar
  197. Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210CrossRefGoogle Scholar
  198. Whiting SN, De Souza M, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulator Thlaspi caerulescens. Environ Sci Technol 35:3144–3150PubMedCrossRefGoogle Scholar
  199. Wolfe NL, Ou T-Y, Carreira L (1993) Biochemical remediation of TNT contaminated soils. Tech. Rep. prepared for the U.S. Army Corps Eng. U.S. Army Eng. Waterways Exp. Stn., Vicksburg, MS, USAGoogle Scholar
  200. Wu CH, Wood TK, Mulchandani A, Chen W (2006a) Engineering of plant–microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134PubMedCrossRefGoogle Scholar
  201. Wu SC, Cheung KC, Luo YM, Wong MH (2006b) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135PubMedCrossRefGoogle Scholar
  202. Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378PubMedCrossRefGoogle Scholar
  203. Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by e recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenese constitutively. Appl Environ Microbiol 64:112–118PubMedGoogle Scholar
  204. Young IM, Crawford JW (2004) Interactions and self-organization in the soil–microbe complex. Science 304:1634–1637PubMedCrossRefGoogle Scholar
  205. Zaccheo P, Crippa L, Di Muzio Pasta V (2006) Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant Soil 283:43–56CrossRefGoogle Scholar
  206. Zaidi S, Musarrat J (2004) Characterisation and nickel sorption kinetics of a new metal hyper-accumulator Bacillus sp. J Environ Sci Health A 39:681–691CrossRefGoogle Scholar
  207. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997PubMedCrossRefGoogle Scholar
  208. Zhang Y, Frankenberger WT (2000) Formation of dimethylselenonium compounds in soil. Environ Sci Technol 34:776–783CrossRefGoogle Scholar
  209. Zhao FJ, Hamon R, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Universität für Bodenkultur WienWienAustria

Personalised recommendations