Plant and Soil

, Volume 308, Issue 1–2, pp 267–275 | Cite as

Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology

  • Matthias C. RilligEmail author
  • Philip W. Ramsey
  • James E. Gannon
  • Daniel L. Mummey
  • Vijay Gadkar
  • Yoram Kapulnik
Regular Article


Despite the importance of arbuscular mycorrhizal fungi (AMF) to ecosystem processes, few experimental tools are available to quantify AMF contributions to process rates. In this study we examine the efficacy of an experimental system consisting of wildtype (WT) and different non-mycorrhizal (Myc−) genotype pairs of tomato (Solanum lycopersicum L.), specifically focusing on cv Micro-Tom. Two conditions necessary to make such a system useful were examined; (1) that the Myc− genotype(s) do not get colonized in a full soil AMF community background, while the WT does, and B) that there are no non-target effects of the Myc− phenotype on soil microbes. We assessed the second condition by growing Myc− genotypes and WT in non-mycorrhizal soil, monitoring plant growth (root, shoot biomass; root length; root diameter size distribution) and soil microbial community structure (PLFA analysis) as indicators of any changes in root tissue quality or rhizodeposition. All tested Myc− genotypes showed a drastically reduced colonization in mycorrhizal soil. However, in non-mycorrhizal soil, M161 had greater root biomass and M20 greater microbial biomass compared to WT. Only one of the Myc− mutants examined fully met the criteria. We conclude that the BC1/WT pair is a powerful experimental system and recommend caution when using Myc− mutants in mycorrhizal ecology.


Micro-Tom Non-mycorrhizal mutant Solanum lycopersicum L. (tomato) Plant–soil interactions Mycorrhizal ecology 



We thank the University of Montana grants program (UGP) for partially funding this study, Andrew Hoye, Annika Johns, and Jeff Piotrowski for help with experiments and analyses, and Smadar Wininger for tomato breeding and maintenance of the mutant lines.


  1. Allen MF (1991) The ecology of mycorrhizae. Cambridge University, Cambridge, UKGoogle Scholar
  2. Augé RM, Sylvia DM, Park S, Buttery BR, Saxton AM, Moore JL, Cho K (2004) Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Can J Bot 82:503–514CrossRefGoogle Scholar
  3. Barker SJ, Stummer B, Gao L, Dispain I, O’Connor PJ, Smith SE (1998) A mutant in Lycopersicon esculentum L. Mill. with highly reduced VA mycorrhizal colonization: Isolation and preliminary characterization. Plant J 15:791–797CrossRefGoogle Scholar
  4. Barker SJ, Edmonds-Tibbett TL, Forsyth LM, Klingler JP, Toussaint J-P, Smith FA, Smith SE (2006) Root infection of the reduced mycorrhizal colonization (rmc) mutant of tomato reveals genetic interaction between symbiosis and parasitism. Physiol Mol Plant Pathol 67:277–283CrossRefGoogle Scholar
  5. Callaway RM, Thelen GC, Barth S, Ramsey PW, Gannon JE (2004) Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85:1062–1071CrossRefGoogle Scholar
  6. Cavagnaro TR, Smith FA, Hay G, Carne-Cavagnaro VL, Smith SE (2004) Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomato. New Phytol 161:485–494CrossRefGoogle Scholar
  7. Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225CrossRefGoogle Scholar
  8. Cavagnaro TR, Jackson LE, Scow KM, Hristova KR (2007a) Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb Ecol 54:618–626PubMedCrossRefGoogle Scholar
  9. Cavagnaro TR, Sokolow SK, Jackson LE (2007b) Mycorrhizal effects on growth and nutrition of tomato under elevated atmospheric carbon dioxide. Functional Plant Biol 34:730–736CrossRefGoogle Scholar
  10. David-Schwartz R, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J 27:561–569PubMedCrossRefGoogle Scholar
  11. David-Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol Plant-Microb Interact 16:382–388CrossRefGoogle Scholar
  12. Endlweber K, Scheu S (2006) Establishing arbuscular mycorrhiza-free soil: a comparison of six methods and their effects on nutrient mobilization. Appl Soil Ecol 34:276–279CrossRefGoogle Scholar
  13. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  14. Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65CrossRefGoogle Scholar
  15. Frostegård A, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617PubMedGoogle Scholar
  16. Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499PubMedCrossRefGoogle Scholar
  17. Gao LL, Delp G, Smith SE (2001) Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytol 151:477–491CrossRefGoogle Scholar
  18. Garbaye J (1994) Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  19. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Ann Rev Microbiol 59:19–42CrossRefGoogle Scholar
  20. Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244:319–331CrossRefGoogle Scholar
  21. Johnson D, Leake JR, Read DJ (2001) Novel in growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytol 152:555–562CrossRefGoogle Scholar
  22. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  23. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480CrossRefGoogle Scholar
  24. Lepš J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York, USAGoogle Scholar
  25. Lutgen ER, Clairmont DL, Graham J, Rillig MC (2003) Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant Soil 257:71–83CrossRefGoogle Scholar
  26. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  27. Koide RT, Li M (1989) Appropriate controls for vesicular-arbuscular mycorrhiza research. New Phytol 111:35–44CrossRefGoogle Scholar
  28. Marschner P, Timonen S (2005) Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36CrossRefGoogle Scholar
  29. Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol 150:525–532CrossRefGoogle Scholar
  30. Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472CrossRefGoogle Scholar
  31. Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90CrossRefGoogle Scholar
  32. Mummey DL, Rillig MC (2007) Evaluation of LSU rRNA-gene PCR primers for the study of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis. J Microbiol Methods 70:200–204PubMedCrossRefGoogle Scholar
  33. Neumann E, George E (2005) Does the presence of arbuscular mycorrhizal fungi influence growth and nutrient uptake of a wild-type tomato cultivar and a mycorrhiza-defective mutant, cultivated with roots sharing the same soil volume? New Phytol 166:601–609PubMedCrossRefGoogle Scholar
  34. Paszkowski U, Jakovleva L, Boller T (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J 47:165–173PubMedCrossRefGoogle Scholar
  35. Peterson RL, Guinel FC (2000) The use of plant mutants to study regulation of colonization by AM fungi. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, The Netherlands, pp 147–172Google Scholar
  36. Poulsen KH, Nagy R, Gao L-L, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–454PubMedCrossRefGoogle Scholar
  37. Ramsey PW, Rillig MC, Feris KP, Gordon NS, Moore JN, Holben WE, Gannon JE (2005) Relationship between communities and processes; new insights from a field study of a contaminated ecosystem. Ecol Lett 8:1201–1210CrossRefGoogle Scholar
  38. Ramsey PW, Rillig MC, Feris KP, Holben WE, Gannon JE (2006) Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia 50:275–280CrossRefGoogle Scholar
  39. Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754CrossRefGoogle Scholar
  40. Rillig MC, Allen MF, Field CB (1999) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119:572–577CrossRefGoogle Scholar
  41. Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE (2006) Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiol Ecol 57:389–395PubMedCrossRefGoogle Scholar
  42. Schweiger P, Jakobsen I (2000) Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant Soil 226:237–244CrossRefGoogle Scholar
  43. Sekhara Reddy DMR, Schorderet M, Feller U, Reinhardt D (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J 51:739–750CrossRefGoogle Scholar
  44. Six J, Feller C, Denef K, Ogle SM, De Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775CrossRefGoogle Scholar
  45. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  46. Smith MD, Hartnett DC, Rice CW (2000) Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–946CrossRefGoogle Scholar
  47. White D, Ringelberg D (1998) Signature lipid biomarker analysis. In: Burlage R, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford, New York, pp 255–272Google Scholar
  48. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Matthias C. Rillig
    • 1
    • 2
    Email author
  • Philip W. Ramsey
    • 2
  • James E. Gannon
    • 2
  • Daniel L. Mummey
    • 2
  • Vijay Gadkar
    • 2
    • 3
  • Yoram Kapulnik
    • 3
  1. 1.Institut für BiologieFreie Universität BerlinBerlinGermany
  2. 2.Microbial Ecology Program, Division of Biological SciencesThe University of MontanaMissoulaUSA
  3. 3.Agronomy and Natural Resources DepartmentARO, The Volcani CenterBet DaganIsrael

Personalised recommendations