Plant and Soil

, Volume 301, Issue 1–2, pp 29–36 | Cite as

Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil

  • M.-P. FauconEmail author
  • M. Ngoy Shutcha
  • P. Meerts
Regular Article


Metal concentrations have been determined in shoots of 12 species considered as Cu and/or Co hyperaccumulators, collected from five subpopulations in a Cu/Co mine in Katanga. Samples have been subjected to three cleansing protocols (water, alconox, alconox + EDTA). Cu/Co concentrations were significantly higher when demineralised water was used to wash samples compared to more aggressive solutions. Washing effect was largest for species with velvety (Acalypha cupricola) or sticky (Haumaniastrum katangense) indumentum. Element concentrations in shoots varied by two orders of magnitude, i.e. 45–2,891 mg kg−1 Cu (median: 329 mg kg−1) and 21–1,971 mg kg−1 Co (median: 426 mg kg−1) and were generally lower than previously published values. Only 9.3% of data exceeded the hyperaccumulation threshold (1,000 mg kg−1) for Cu and 13% for Co. Shoot concentrations varied by up to two orders of magnitude among subpopulations within species which was partly explained by variation of metal concentrations in the soil. Although the species considered in this paper undisputedly accumulate Co and Cu up to very high concentrations that require specific shoot tolerance mechanisms, the concept of hyperaccumulation, as defined for other metals like Zn and Ni, needs to be critically re-examined for Cu and Co. Our results suggest that many species so far regarded as Co/Cu hyperaccumulators might eventually turn out to be indicators.


Hyperaccumulation Heavy metals Copper Cobalt Washing Soil–plant correlation 



The “Fonds National de la Recherche Scientifique – Belgium” is acknowledged for financial support to MPF, who is a research fellow of the Fonds pour la Recherche dans l’Industrie et l’Agriculture (FRIA, Belgium). We are grateful to Wolf Gruber (Brussels) for help with ICP-AES analyses and Prof. Michel Ngongo Luhembwe for hosting us at the Faculté d’Agronomie of the Université de Lubumbashi and for providing logistic support. This work is part of a “Projet interuniversitaire ciblé” (Project REMEDLU) funded by the Coopération Universitaire au Développement (Belgium). Useful comments by two referees are gratefully acknowledged.


  1. Baker AJM (1981) Accumulators and excluders – Strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  2. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  3. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Bañuelos G, Terry N (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, FL, USA, pp 85–108Google Scholar
  4. Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–544CrossRefGoogle Scholar
  5. Brooks RR (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, UKGoogle Scholar
  6. Brooks RR, McCleave JA, Malaisse F (1977) Copper and cobalt in African species of Crotalaria. Proc R Soc Lond B 197:231–236Google Scholar
  7. Brooks RR, Morrison RD, Reeves RD, Malaisse F (1978) Copper and cobalt in African species of Aeolanthus Mart. (Plectranthinae, Labiatae). Plant Soil 50:503–507CrossRefGoogle Scholar
  8. Brooks RR, Reeves RD, Morrison RS, Malaisse F (1980) Hyperaccumulation of copper and cobalt – A review. Bull Soc Roy Bot Belg 113:166–172Google Scholar
  9. Brooks RR, Gregoire J, Madi L, Malaisse F (1982) Phytogéochimie des gisements cupro-cobaltifères de l’anticlinal de Kasonta (Shaba-Zaïre). Geo-Eco-Trop 6:219–228Google Scholar
  10. Brooks RR, Naidu S, Malaisse F, Lee J (1987) The elemental content of metallophytes from the copper/cobalt deposits of Central Africa. Bull Soc Roy Bot Belg 119:179–191Google Scholar
  11. Cottenie A, Verloo M, Kiekens L, Velghe G, Camerlynck R (1982) Chemical analysis of plants and soils. Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (I.W.O.N.L.), Brussels, BelgiumGoogle Scholar
  12. Duvigneaud P, Denaeyer- De Smet S (1963) Cuivre et végétation au Katanga. Bull Soc Roy Bot Belg 96:92–231Google Scholar
  13. Fernando DR, Woodrow IE, Bakkaus EJ, Collins RN, Baker AJM, Batianoff GN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152CrossRefGoogle Scholar
  14. Hargrove WL, Ohki K, Wilson DO (1985) Influence of washing on elemental analysis of leaves of fieldgrown crop plants. Plant Soil 88:93–100CrossRefGoogle Scholar
  15. Leteinturier B (2002) Evaluation du potential phytocénotique des gisements cuprifères d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l’activité minière. PhD. Thesis, Faculté des Sciences agronomiques de Gembloux, BelgiumGoogle Scholar
  16. Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105CrossRefGoogle Scholar
  17. Malaisse F, Grégoire J (1978) Contribution à la phytogéochimie de la Mine de l’Étoile (Shaba, Zaïre). Bull Soc Roy Bot Belg 111:252–260Google Scholar
  18. Malaisse F, Grégoire J, Brooks RR, Morrison RS, Reeves RD (1978) Aeollanthus biformifolius. De Wild.: a hyperaccumulator of copper from Zaïre. Science 199:887–888PubMedCrossRefGoogle Scholar
  19. Malaisse F, Grégoire J, Morrison RS, Brooks RR, Reeves RD (1979) Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaïre. Oikos 33:472–478CrossRefGoogle Scholar
  20. Malaisse F, Brooks RR, Baker AJM (1994) Diversity of vegetation communities in relation to soil heavy metal content at the Shinkolobwe copper/cobalt/uranium mineralization, Upper Shaba, Zaïre. Bull Soc Roy Bot Belg 127:3–16Google Scholar
  21. Malaisse F, Baker AJM, Ruelle S (1999) Diversity of plant communities and leaf heavy content at Luiswishi copper/cobalt mineralization, Katanga, Dem. Rep. Congo. Biotechnol Agron Soc Environ 3:104–114Google Scholar
  22. Markert B (1996) Instrumental element and multi-element analysis of plant samples. Methods and applications. Wiley, Chichester, EnglandGoogle Scholar
  23. Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 53:535–539CrossRefGoogle Scholar
  24. Paton A, Brooks RR (1996) A re-evaluation of Haumaniastrum species as geobotanical indicators of copper and cobalt. J Geochem Explor 56:37–45CrossRefGoogle Scholar
  25. Pollard AJ, Powell KD, Harper FA, Smith JA (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566CrossRefGoogle Scholar
  26. Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65CrossRefGoogle Scholar
  27. Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of Metal-Contaminated Soils. NATO Science Series: IV: earth and environmental sciences vol 68. Springer, New YorkGoogle Scholar
  28. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 193–221Google Scholar
  29. Reilly C (1969) The uptake and accumulation of copper by Becium homblei (De Wild.) Duvign. & Plancke. New Phytol 68:1081–1087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratoire de Génétique et Ecologie végétalesUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Faculté des Sciences AgronomiquesUniversité de LubumbashiLubumbashiDemocratic Republic of Congo

Personalised recommendations