Advertisement

Plant and Soil

, Volume 291, Issue 1–2, pp 67–79 | Cite as

Can water responses in Stipa tenacissima L. during the summer season be promoted by non-rainfall water gains in soil?

  • David A. Ramírez
  • Juan Bellot
  • Francisco Domingo
  • Adela Blasco
Original Paper

Abstract

This article reports on quantified soil water gains and their possible effects on summer water relationships in a semiarid Stipa tenacissima L. grasslands located in SE Spain. We believe that the net soil water gains detected using minilysimeters could be from soil water vapour adsorption (WVA). Our study of high water-stress showed stomatal conductance (21.8–43.1 mmol H2O m−2 s−1) in S. tenacissima leaves unusual for the summer season, and the evapotranspiration from S. tenacissima grassland, estimated by a multi-source sparse evapotranspiration model, closely corresponding to total WVA. This highlights the importance of summer soil WVA to stomatal conductance and vital transpiration in S. tenacissima. This study measured pre-dawn leaf water potential (ψ) response to sporadic light rainfall, finding that a light summer rainfall (1.59 mm day−1) was sufficient to vary ψ in S. tenacissima from −3.8 (close to the turgour loss point) to −2.7 MPa. We hypothesize that soil WVA can supply vegetation with water vital to its survival in seasons with a severe water deficit, giving rise to a close relationship between soil water dynamics and plant water response.

Keywords

Evapotranspiration Leaf water potential Minilysimeter Soil water vapour adsorption Stipa tenacissima Stomatal conductance 

Notes

Acknowledgements

Financial support was provided by the “Efecto de la cubierta vegetal en el balance hídrico y en la disponibilidad y calidad del agua propuesta para aumentar la recarga de acuíferos” Project, funded by the CICYT (REN2000-0529HID, CGL2004-03627), by the European Community “AQUADAPT: Energy, Environment and Sustainable Development” (EVK1-2001-00149) and “CANOA: Caracterización y modelización de procesos y regimenes hidrológicos en cuencas aforadas para la predicción en cuencas no aforadas” (CGL2004-04919-C02-01/HID) projects. David A. Ramírez received a grant for his Ph.D. thesis research from the University of Alicante. We are very grateful for the valuable comments and suggestions made by Dr. Jesús Fernández Gálvez and anonymous referees. Deborah Fuldauer corrected and improved the English text

References

  1. Agam (Ninari) N, Berliner PR (2004) Diurnal water content changes in the bare soil of a coastal desert. J Hydrometeorol 5:922–933CrossRefGoogle Scholar
  2. Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments-A review. J Arid Environ 65:572–590CrossRefGoogle Scholar
  3. Balaguer L, Pugnaire FI, Martinez-Ferri E, Armas C, Valladares F, Manrique E (2002) Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant Soil 240:343–352CrossRefGoogle Scholar
  4. Bellot J, Sánchez JR, Chirino E, Hernández N, Abdelli F, Martinez JM (1999) Effect of different vegetation type on the soil water balance in semi-arid areas of South Eastern Spain. Phys Chem Earth (B) 24:353–357Google Scholar
  5. Brenner AJ, Incoll LD (1997) The effect of clumping and stomatal response on evaporation from sparsely vegetated shrublands. Agric Forest Meteorol 84:187–205CrossRefGoogle Scholar
  6. Chirino E (2003) Influencia de las precipitaciones y de la cubierta vegetal en el balance hídrico superficial y en la recarga de acuíferos en clima semiárido. Ph.D. Thesis, University of Alicante, SpainGoogle Scholar
  7. Cui M, Caldwell MM (1997) A large ephemeral release of nitrogen upon wetting a dry soil and corresponding root responses in the field. Plant Soil 191:291–299CrossRefGoogle Scholar
  8. Danalatos NG, Kosmas C, Moustakas N, Yassoglou N (1995) Rock fragments: II. Their effect on soil properties and biomass production. Soil Use Manage 11:121–126CrossRefGoogle Scholar
  9. de Kroon H, Hutchings MJ (1995) Morphological plasticity in clonal plants: the foraging concept reconsidered. J Ecol 83(1):143–152CrossRefGoogle Scholar
  10. Dolman AJ (1993) A multiple-source land surface energy balance model for use in general circulation models. Agric Forest Meteorol 65:21–45CrossRefGoogle Scholar
  11. Domingo F, Puigdefábregas J, Clark SC, Incoll LD, Lockwood JG (1991) Plant physiological behaviour in relation to water in a semiarid environment in south-east Spain. In: Kienitz G, Milly PCD, van Genuchten MTH, Robsjerg D, Shuttleworth WJ (eds) Hydrological interactions between atmosphere, soil and vegetation, Proceedings of the Vienna Symposium. IAHS Publication No. 204, Wallingford, pp 335–343Google Scholar
  12. Domingo F, Van Gardingen PR, Brenner AJ (1996) Leaf boundary layer conductance of two native species in southeast Spain. Agric Forest Meteorol 81:179–199CrossRefGoogle Scholar
  13. Domingo F, Sánchez G, Moro MJ, Brenner AJ, Puigdefábregas J (1998) Measurement and modelling of rainfall interception by three semi-arid canopies. Agric Forest Meteorol 91:275–292CrossRefGoogle Scholar
  14. Domingo F, Villagarcia L, Brenner A, Puigdefábregas J (1999) Evapotranspiration model for semi-arid shrub-lands testes against data from SE Spain. Agric Forest Meteorol 95:67–84CrossRefGoogle Scholar
  15. Domingo F, Brenner AJ, Gutiérrez L, Clark SC, Incoll LD, Aguilera C (2003) Water relations only partly explain the distributions of three perennial plants species in a semi-arid environment. Biol Plant 46(2):257–262CrossRefGoogle Scholar
  16. Dugas WA, Mayeux HS (1991) Evaporation from rangeland with and without honey mesquite. J Range Manage 44:161–170Google Scholar
  17. Dugas WA, Hicks RA, Gibbens RP (1996) Structure and function of C3 and C4 Chihuahuan desert plant communities. Energy balance components. J Arid Environ 34:63–79CrossRefGoogle Scholar
  18. FAO-UNESCO (1988) Soil map of the world. Revised legend. World Soil Resources, Report 60. RomeGoogle Scholar
  19. Field CB, Ball JT, Berry JA (1989) Photosynthesis: principles and field techniques. In Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology, field methods and instrumentation. Chapman & Hall, New York, pp 209–248Google Scholar
  20. Grace J (1992) Relaciones plantas-ambiente. Oikos-Tau, S.A., Barcelona 120 ppGoogle Scholar
  21. Ivans CY, Leffler AJ, Spaulding U, Stark JM, Ryel RJ, Caldwell MM (2003) Root responses and nitrogen acquisition by Artemisia tridentate and Agropyron desetorum following small summer rainfall events. Oecologia 134:317–324PubMedGoogle Scholar
  22. Kidron GJ (2000) Analysis of dew precipitation in three habitats within a small drainage basin, Negev highlands, Israel. Atmos Res 55:257–270CrossRefGoogle Scholar
  23. Kidron GJ (2005) Angle and aspect dependent dew and fog precipitation in the Negev desert. J Hydrol 301:66–74CrossRefGoogle Scholar
  24. Kosmas C, Danalatos NG, Poesen J, van Wesemael B (1998) The effect of water vapor adsorption on soil moisture content under Mediterranean climatic conditions. Agric Water Manage 36:157–168CrossRefGoogle Scholar
  25. Kosmas C, Marathianou M, Gerontidis St, Detsis V, Tsara M, Poesen J (2001) Parameters affecting vapor adsorption by the soil under semi-arid climatic conditions. Agric Water Manage 48:61–78CrossRefGoogle Scholar
  26. Maestre FT, Bautista S, Cortina J (2003) Positive, negative, and net effects in grass-shrub interactions in Mediterranean semiarid grasslands. Ecology 84(12):3186–3197Google Scholar
  27. Malek E, McCurdy G, Giles B (1999) Dew contribution to the annual water balances in semi-arid desert valleys. J Arid Environ 42:71–80CrossRefGoogle Scholar
  28. Massman WJ (1992) A surface energy balance method for partitioning evapotranspiration data into plant and soil components for a surface with partial canopy cover. Water Resour Res 28:1723–1732CrossRefGoogle Scholar
  29. McNaughton SJ (1991) Dryland herbaceous perennials. In Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press Inc San Diego, California, pp 307–325Google Scholar
  30. Pearcy RW, Schulze ED, Zimmermann R (1989) Measurement of transpiration and leaf conductance. In Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology, field methods and instrumentation. Chapman & Hall, New York, pp 97–113Google Scholar
  31. Pitelka LF, Ashmun JW (1985) Physiology and integration of ramets in clonals plants. In Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 399–435Google Scholar
  32. Puigdefábregas J, Sánchez G (1996) Geomorphological implications of vegetation patchiness on semi-arid slopes. In: Anderson MG, Brooks SM (eds) Advances in hillslopes processes, vol 2. John Wiley and Sons Ltd, New York, pp 1027–1060Google Scholar
  33. Puigdefábregas J, Sole A, Guitierrez L, del Barrio G, Boer M (1999) Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth Sci Rev 48:39–70CrossRefGoogle Scholar
  34. Pugnaire FI, Haase P (1996) Comparative physiology and growth of two perennial tussock grass species in a semi-arid environment. Ann Bot 77:81–86CrossRefGoogle Scholar
  35. Pugnaire FI, Haase P, Incoll L, Clark SC (1996) Response of tussock grass Stipa tenacissima to watering in a semi-arid environment. Funct Ecol 10:265–274CrossRefGoogle Scholar
  36. Ramírez DA (2006) Estudio de la transpiración del esparto (Stipa tenacissima L.) en una cuenca del semiárido alicantino: un análisis pluriescalar. Ph.D. Thesis, University of Alicante, SpainGoogle Scholar
  37. Sala OE, Lauenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53(3):301–304CrossRefGoogle Scholar
  38. Sala OE, Lauenroth WK, Parton WJ (1982) Plant recovery following prolonged drought in a shortgrass steppe. Agric Meteorol 27:49–58CrossRefGoogle Scholar
  39. Sánchez G (1995) Arquitectura y dinámica de las matas de esparto (Stipa tenacissima L.), efectos en el medio e interacciones con la erosión. Ph.D. thesis, Autónoma de Madrid Univ., SpainGoogle Scholar
  40. Seely MK (1976) Fog basking by the Namib Desert beetle Onymacris unguicularis. Nature 262:284–285CrossRefGoogle Scholar
  41. Shanyengana ES, Henschel JR, Seely MK, Sanderson RD (2002) Exploring fog as supplementary water source in Namibia. Atmos Res 64:251–259CrossRefGoogle Scholar
  42. Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops—an energy combination theory. Quart J Royal Met Soc 111:839–855CrossRefGoogle Scholar
  43. Verhoef A, Díaz-Espejo A, Knight JR, Villagarcía L, Fernández JE (2006) Adsorption of water vapour by bare soil in an olive grove in Southern Spain. J Hydrometeorol 7(5):1011–1027CrossRefGoogle Scholar
  44. Villagarcía L (2000) Reformulación, parametrización y validación de un modelo de evapotranspiración para vegetación dispersa. PhD Thesis, Universidad de Almería, Departamento de Ecología Vegetal y Ecología, Almería, SpainGoogle Scholar
  45. Yunusa IAM, Walker RR, Lu P (2004) Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agric Forest Meteorol 127:93–107CrossRefGoogle Scholar
  46. Zangvil A (1996) Six years of dew observations in the Negev Desert, Israel. J Arid Environ 32:361–371CrossRefGoogle Scholar
  47. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall Inc, New Jersey. p 663Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • David A. Ramírez
    • 1
    • 2
  • Juan Bellot
    • 1
  • Francisco Domingo
    • 3
    • 4
  • Adela Blasco
    • 1
  1. 1.Departamento de EcologíaUniversity of AlicanteAlicanteSpain
  2. 2.Laboratorio de Ecología de Procesos, Dpto. BiologíaUniversidad Nacional Agraria La MolinaLimaPerú
  3. 3.Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones CientíficasAlmeríaSpain
  4. 4.Departamento de Biología Vegetal y Ecología, Escuela Politécnica SuperiorUniversidad de AlmeríaAlmeríaSpain

Personalised recommendations