Plant and Soil

, Volume 289, Issue 1–2, pp 265–277 | Cite as

Fertilizer vs. organic matter contributions to nitrogen leaching in cropping systems of the Pampas: 15N application in field lysimeters

  • Silvina I. PortelaEmail author
  • Adrián E. Andriulo
  • María C. Sasal
  • Bruno Mary
  • Esteban G. Jobbágy
Original Paper


Nitrogen (N) export from soils to streams and groundwater under the intensifying cropping schemes of the Pampas is modest compared to intensively cultivated basins of Europe and North America; however, a slow N enrichment of water resources has been suggested. We (1) analyzed the fate of fertilizer N and (2) evaluated the contribution of fertilizer and soil organic matter (SOM) to N leaching under the typical cropping conditions of the Pampas. Fertilizer N was applied as 15N-labeled ammonium sulfate to corn (in a corn/soybean rotation) sown under zero tillage in filled-in lysimeters containing two soils of different texture representative of the Pampean region (52 and 78 kg N ha-1, added to the silt loam and sandy loam soil, respectively). Total fertilizer recovery at corn harvest averaged 84 and 64% for the silt loam and sandy loam lysimeters, respectively. Most fertilizer N was removed with plant biomass (39%) or remained immobilized in the soil (29 and 15%, for the silt loam and sandy loam soil, respectively) whereas its loss through drainage was negligible (<0.01%). We presume that the unaccounted fertilizer N losses were related to volatilization and denitrification. Throughout the corn growing season, subsequent fallow and soybean crop, which took place during an exceptionally dry period, the fertilizer N immobilized in the organic pool remained stable, and N leaching was scarce (7.5 kg N ha-1), similar at both soils, and had a low contribution of fertilizer N (0–3.5%), implying that >96% of the leached N was derived from SOM mineralization. The inherent high SOM of Pampean soils and the favorable climatic conditions are likely to propitiate year-round production of nitrate, favoring its participation in crop nutrition and leaching. The presence of 15N in drainage water, however, suggests that fertilizer N leaching could become significant in situations with higher fertilization rates or more rainy seasons.


Corn Field lysimeters Humid Pampas 15N-labeled fertilizer Soil organic matter Nitrogen leaching 



We gratefully acknowledge the Agencia Nacional de Promoción Científica y Tecnológica for providing financial support for this research and for Silvina Portela under the project PICT 00-01 08-08054. We also thank Fernando Rimatori for laboratory assistance, Olivier Delfosse for 15N analysis and María Liliana Darder, Adolfo Sosa and Alberto Rondán for field assistance.


  1. Addiscott TM, Whitmore AP, Powlson DS (1991) Farming, fertilizers and the nitrate problem. CAB International, Wallingford, pp 92–109Google Scholar
  2. Álvarez R, Lemcoff JH, Merzari AH (1995) Balance de nitrógeno en un suelo cultivado con soja. Ciencia del Suelo 13:38–40Google Scholar
  3. Andriulo A, Mary B, Guérif J (1999) Modeling soil carbon dynamics with various cropping sequences on the rolling pampas. Agronomie 19:365–377Google Scholar
  4. Andriulo A, Sasal MC, Rimatori F (2002) Impacto del sistema de producción agrícola sobre la calidad y la cantidad del drenaje en el norte de Buenos Aires. In 2do Taller de Contaminación por Agroquímicos. Actas en CD, PergaminoGoogle Scholar
  5. Aulakh MS, Doran JW, Mosier AR (1992) Soil denitrification-significance, measurement and effects of management. Adv Soil Sci 18:1–57Google Scholar
  6. Austin AT, Piñiero G, Gonzalez Polo M (2006) More is less: agricultural impacts on the N cycle in Argentina. Biogeochem 79Google Scholar
  7. Bacon PE, Freney JR (1989) Nitrogen loss from different tillage systems and the effect on cereal grain yield. Fert Res 20:59–66CrossRefGoogle Scholar
  8. Balabane M, Balesdent J (1992) Input of fertilizer-derived labeled N to soil organic matter during a growing season of maize in the field. Soil Biol Biochem 24:89–96CrossRefGoogle Scholar
  9. Broadbent FE, Rauschkolb RS (1977) Nitrogen fertilization and water pollution. California Agriculture 31:24–25Google Scholar
  10. Cassman KG, Dobermann A, Walters D (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140PubMedGoogle Scholar
  11. Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297CrossRefGoogle Scholar
  12. Fillery IRP (1999) Monitoring water and nutrient fluxes down the profile: closing the nutrient budget. In: Rengel Z (ed) Mineral nutrition of crops. Food Products Press, New York, pp 289–325Google Scholar
  13. Francis DD, Schepers JS, Vigil MF (1993) Post-anthesis nitrogen loss from corn. Agron J 85:659–663CrossRefGoogle Scholar
  14. Groffman PM, Hendrix PF, Crossley DA (1987) Nitrogen dynamics in conventional and no-tillage agroecosystems with inorganic fertilizer or legume nitrogen inputs. Plant Soil 97:315–332CrossRefGoogle Scholar
  15. Hall AJ, Rebella CM, Ghersa CM, Culot JP (1992) Field-crop systems of the Pampas. In: Pearson CJ (ed) Ecosystems of the World. Field crop ecosystems. Elsevier, Amsterdam, pp 413–450Google Scholar
  16. Herrero MA, Sardi G, Flores MC, Carbó LI, Iramain MS, Valeriani E, Galindo G (2005) Utilización de los factores de riesgo de contaminación por nitratos en la gestión de aguas subterráneas en zonas húmedas de la Argentina. In: Un enfoque integrado para la gestión sustentable del agua. Experiencias en zonas húmedas: V Seminario Internacional CYTED XVII. 46 pp. Buenos AiresGoogle Scholar
  17. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu Zhao-Liang (1996) Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochem 35:75–139Google Scholar
  18. Howarth RW, Boyer EW, Pabich WJ, Galloway JN (2002) Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 31:88–96Google Scholar
  19. Irizar AB, Sasal MC, Portela SI, Restovich SB, Rimatori F, Darder ML, Andriulo AE (2005) La fertilización nitrogenada de maíz y el estado orgánico de los suelos. In: VIII Congreso Nacional de Maíz. Rosario, 211 ppGoogle Scholar
  20. Jansson SL (1963) Balance sheet and residual effects of fertilizer nitrogen in a 6-year study with 15N. Soil Sci 95:31–37CrossRefGoogle Scholar
  21. Keeney DR, Nelson DW (1982) Nitrogen-Inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2: chemical and microbiological properties, 2nd edn. Soil Science Society of America and American Society of Agronomy, Madison, WIGoogle Scholar
  22. Kowalenko CG (1989) The fate of applied nitrogen in a fraser valley soil using 15N in field microplots. Can J Soil Sci 69:825–833CrossRefGoogle Scholar
  23. Kücke M, Kleeberg P (1997) Nitrogen balance and soil nitrogen dynamics in two areas with different soil, climatic and cropping conditions. European J Agron 6:89–100CrossRefGoogle Scholar
  24. Lajtha K (2000) Ecosystem nutrient balance and dynamics. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer-Verlag, New York, pp 249–264Google Scholar
  25. Larsson U, Elmgren R, Wulff F (1985) Eutrophication and the Baltic Sea: causes and consequences. Ambio 14:9–14Google Scholar
  26. Lavado RS (1983) Evaluación de la relación entre composición química del agua de lluvia y el grado de salinidad y sodicidad de distintos suelos. Revista Facultad de Agronomía 4:135–139Google Scholar
  27. Legg JO, Meisinger JJ (1982) Soil nitrogen budgets. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agron Monogr 22. ASA, CSSA and SSSA, Madison, WI, pp 503–566Google Scholar
  28. Malhi SS, Grant CA, Johnston AM, Gill KS (2001) Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: a review. Soil Tillage Res 60:101–122CrossRefGoogle Scholar
  29. Malhi SS, Nyborg M, Solberg ED (1996) Influence of source, method of placement and simulated rainfall on the recovery of 15N-labeled fertilizers under zero tillage. Can J Soil Sci 76:93–100Google Scholar
  30. Marshall RB, Whiteway JN (1985) Automation of an interface between a nitrogen analyzer and an isotope ratio mass spectrometer. Analyst 11110:867–887CrossRefGoogle Scholar
  31. Moody DW (1990) Groundwater contamination in the United States. J Soil Water Cons 45:170–179Google Scholar
  32. Moscatelli GN (1991) Los suelos de la región pampeana. In: Barsky O (ed) El Desarrollo Agropecuario Pampeano. INDEC-INTA-IICA, Buenos Aires, pp 11–76Google Scholar
  33. Mosier AR (2001) Exchange of gaseous nitrogen compounds between terrestrial systems and the atmosphere. In: Follett RF, Hatfield JL (eds) Nitrogen in the environment: Sources, problems and management. Elsevier, Amsterdam, pp 291–309Google Scholar
  34. Mugni H, Jergentz S, Schultz R, Maine A, Bonetto C (2005) Phosphate and nitrogen compounds in streams of Pampean Plain areas under intensive cultivation (Buenos Aires, Argentina). In: Serrano L, Golterman HL (eds) Proc. 4th Intl Symposium Phosphates in Sediments. Backhuys Publishers, The Netherlands, pp 163–170Google Scholar
  35. Normand B, Recous S, Vachaud G, Kengni L, Garino B (1997) Nitrogen-15 tracers combined with tension-neutronic method to estimate the nitrogen balance of irrigated maize. Soil Sci Soc Am J 61:1508–1518CrossRefGoogle Scholar
  36. OECD (Organization for Economic Cooperation and Development) (1986) Water pollution by fertilizers and pesticides. OECD Publications, Paris, 146 ppGoogle Scholar
  37. Paces T (1982) Natural and anthropogenic flux of major elements from central Europe. Ambio 11:206–208Google Scholar
  38. Peoples MB, Freney JR, Mosier AR (1995) Minimizing gaseous losses of nitrogen. In: Bacon PE (ed) Nitrogen fertilization in the environment. Marcel Dekker, New York, pp 565–602Google Scholar
  39. Pidello A, Perotti EBR, Chapo GF, Menendez LT (1995) Materia orgánica, actividad microbiana y potencial redox en dos Argiudoles típicos bajo labranza convencional y siembra directa. Ciencia del Suelo 13:6–10Google Scholar
  40. Perotti EBR, Chapo G, Pidello A (1995) Actividad nitrogenasa en relación con el carbono disponible y el nitrógeno inorgánico en un Argiudol. Ciencia del Suelo 13:11–15Google Scholar
  41. Powlson DS (1987) Nitrogen efficiency in agricultural soils and the efficient use of fertilizer nitrogen. CEC Seminar, Edinburg, pp 231–241Google Scholar
  42. Recous S, Fresneau C, Faurie G, Mary B (1988a) The fate of labeled 15N urea and ammonium nitrate applied to a winter wheat crop I. Nitrogen transformations in the soil. Plant Soil 112:205–214CrossRefGoogle Scholar
  43. Recous S, Mary B, Faurie G (1990) Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol Biochem 22:913–922CrossRefGoogle Scholar
  44. Reddy GB, Reddy KR (1993) Fate of nitrogen-15 enriched ammonium nitrate applied to corn. Soil Sci Soc Am J 57:111–115CrossRefGoogle Scholar
  45. SAGPyA (2002) and (2005) Secretaría de Agricultura Ganadería Pesca y Alimentos de la Nación Argentina, Estadísticas Agropecuarias. Available at Scholar
  46. SAS Institute Inc. (1989) SAS/STAT User’s Guide, version 6, vol. 2, 4th edn. SAS Institute Inc., Cary, NC, 846 ppGoogle Scholar
  47. Schindler FV, Knighton RE (1999) Fate of fertilizer nitrogen applied to corn as estimated by the isotopic and difference methods. Soil Sci Soc Am J 63:1734–1740CrossRefGoogle Scholar
  48. Schneider U, Haider K (1992) Denitrification and nitrate leaching losses in an intensively cropped watershed. Z Pflanzenernähr Bodenkd 155:135–141Google Scholar
  49. Smil V (2002) Biofixation and nitrogen in the biosphere and in global food production. In: Finan T, O’Brian M, Layzell D, Vessey K, Newton W (eds) Nitrogen fixation: global perspectives. CAB International, UK, pp 7–9Google Scholar
  50. Soil Survey Staff (1999) Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys, 2nd edn. U.S. Department of Agriculture, Natural Resources Conservation Service, Agriculture Handbook Number 436:870 ppGoogle Scholar
  51. Soriano A, León RJC, Sala OE, Lavado RS, Deregibus VA, Cauhépé MA, Scaglia OA, Velázquez CA, Lemcoff JH (1991) Rio de la Plata grasslands. In: Coupland RT (ed) Temperate subhumid grasslands. Ecosystems of the World. Part 8. Natural Grasslands. Elsevier, Amsterdam, pp 367–407Google Scholar
  52. Teruggi M (1957) The nature and origin of Argentinean loess. J Sedimentol Petrol 27:322–332Google Scholar
  53. Tran TS, Giroux M (1998) Fate of 15N-labeled fertilizer applied to corn grown on different soil types. Can J Soil Sci 78:597–605Google Scholar
  54. US EPA (1995) Drinking water regulations and health advisories. Office of Water, Washington DC. US EPA, 11 ppGoogle Scholar
  55. Viglizzo EF, Lértora FA, Pordomingo AJ, Bernardos JN, Roberto ZE, Del Valle H (2001) Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric Ecosyst Environ 83:65–81CrossRefGoogle Scholar
  56. Viglizzo EF, Pordomingo AJ, Castro MG, Lértora FA (2002) La sustenatabilidad ambiental de la agricultura pampeana: Oportunidad o pesadilla? Ciencia Hoy 12:38–51Google Scholar
  57. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  58. Whitmore AP, Bradbury NJ, Johnston PA (1992) Potential contribution of ploughed grassland to nitrate leaching. Agric Ecosyst Environ 39:221–233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Silvina I. Portela
    • 1
    Email author
  • Adrián E. Andriulo
    • 1
  • María C. Sasal
    • 2
  • Bruno Mary
    • 3
  • Esteban G. Jobbágy
    • 4
  1. 1.Estación Experimental Agropecuaria PergaminoINTA (Instituto Nacional de Tecnología Agropecuaria) PergaminoArgentina
  2. 2.Estación Experimental Agropecuaria ParanáINTAOro VerdeArgentina
  3. 3.Unité d’AgronomieINRALaon CedexFrance
  4. 4.Grupo de Estudios AmbientalesIMASL – Universidad Nacional de San Luis y CONICETSan LuisArgentina

Personalised recommendations