Plant and Soil

, 287:187 | Cite as

Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate

  • José Ignacio QuerejetaEmail author
  • Héctor Estrada-Medina
  • Michael F. Allen
  • Juan J. Jiménez-Osornio
  • Rocío Ruenes
Original Paper


Adult evergreen Ramón (Brosimum alicastrum Sw. Moraceae) trees can thrive on the shallow soils atop limestone of northern Yucatan despite limited soil water storage capacity, and do not require irrigation during the annual dry season. We hypothesized that early development of deep roots to reach moist subsoil layers or groundwater is critical to the performance of ramón trees growing on thin soils (∼5 cm deep) over limestone bedrock. We conducted an isotopic study in a non-irrigated ramón plantation aimed at determining the sources of water used by trees of different age (5 or 9 years old) at the peak of the dry season. Pit excavation showed that Brosimum alicastrum roots were mostly concentrated in the upper soil and bedrock layers. About 5-year-old trees showed a much sharper decrease in shoot water content (21%) than 9-year-old ones (10%) during the dry season. Foliar δ13C values were significantly higher in 5-year-old trees (−27.5 ± 0.3‰) than in 9-year-old ones (−28.5 ± 0.3‰), indicating greater water use efficiency and water stress levels in the younger age group. The δ18O signature of stem water did not differ significantly between tree age groups at either sampling date. Stem water δ18O values of Brosimum alicastrum trees at the peak of drought (−2.3 ± 0.3/−2.9 ± 0.3‰) were significantly different from groundwater (−4.3 ± 0.1‰) for both age groups. According to δ18O data, ramón trees utilized bedrock water from depths between 0.5 and 2.5 m during the late dry season. Better dry-season water status in 9-year-old trees compared to 5-year-old ones appeared to be more the result of greater volume of soil and bedrock explored for water than the outcome of deeper rooting depth. The ability to take up water stored in the upper few meters of the weathered limestone bedrock during the pronounced dry season is likely the key feature allowing Brosimum alicastrum to thrive under non-irrigated conditions in the shallow, rocky soils of the Yucatan. Locally adapted native tree species capable of efficiently extracting water from bedrock may be the only perennial crops suitable for rainfed cultivation in the shallow soils atop limestone of northern Yucatan.


Drought Groundwater Weathered limestone Stable isotopes δ13δ18



We thank David Magaña for allowing us to conduct this research in his Kampepén plantation. We also thank Angela López, Season Snyder and Roberto Lepe for their help with laboratory and field work. This research was supported by a UC MEXUS-CONACYT grant awarded jointly by the University of California Institute for Mexico and the United States, and the Mexican Comisión Nacional de Ciencia y Tecnología. We also thank the financial support of the American Institute for Global Change Research (IAI Project: Biogeochemical cycles under land use change in the semiarid Americas). JI Querejeta acknowledges a postdoctoral Fulbright Fellowship from the Spanish Ministerio de Educación y Ciencia, as well as financial support by the Biocomplexity Program (DEB 9981548) of the US National Science Foundation. Finally, we acknowledge the constructive comments of three anonymous reviewers.


  1. Ayala A, Sandoval SM (1995) Establecimiento y producción temprana de forraje de ramon (Brosimum alicastrum Swartz) en plantaciones a altas densidades en el norte de Yucatán, México. Agroforestería en las Américas 7:10–16Google Scholar
  2. Barnes CJ, Turner JV (1998) Isotopic exchange in soil water. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, AmsterdamGoogle Scholar
  3. Bautista-Zuñiga F, Estrada-Medina H, Jiménez-Osornio JJ, González-Iturbe JA (2004) Relación entre el relieve y unidades de suelo en zonas cársticas de Yucatán. Terra Latinoamericana 22:243–254Google Scholar
  4. Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological Plant Ecology II. Water relations and carbon assimilation. Encyclopaedia of Plant Physiology (New Series) vol 12B. Springer-Verlag, BerlinGoogle Scholar
  5. Brunel JP, Walker GR, Kenneth-Smith AK (1995) Field validation of isotopic procedures for determining sources of water used by plants in a semiarid environment. J Hydrol 167:351–368CrossRefGoogle Scholar
  6. Burgess SO, Adams MA, Turner NC, White DA, Ong CK (2001) Tree roots: conduits for deep recharge of soil water. Oecologia 126:158–165CrossRefGoogle Scholar
  7. Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manage 186:125–132CrossRefGoogle Scholar
  8. Campo J, Dirzo R (2003) Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forest of Yucatan, Mexico. J Trop Ecol 19:525–530CrossRefGoogle Scholar
  9. Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant’s belowground zone of influence. Ecology 84:2313–2321Google Scholar
  10. Chimner RA, Cooper DJ (2004) Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA Plant Soil 260:225–236CrossRefGoogle Scholar
  11. Cramer VA, Thorburn PJ, Fraser GW (1999) Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia. Agric Water Manage 39:187–204CrossRefGoogle Scholar
  12. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable Isotopes in Plant Ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  13. Drake PL, Franks PJ (2003) Water resource partitioning, stem xylem hydraulic properties, and plant water use strategies in a seasonally dry riparian tropical rainforest. Oecologia 137:321–329PubMedCrossRefGoogle Scholar
  14. Duch GJ (1995) Los suelos, la agricultura y vegetación en Yucatán. In: Hérnandez E, Bello E, Levy S (eds) La milpa en Yucatán: Un sistema de producción agrícola tradicional. Colegio de Postgraduados, MéxicoGoogle Scholar
  15. Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082CrossRefGoogle Scholar
  16. Ehleringer JR, Roden J, Dawson TE (2000) Assessing ecosystem-level water relations through stable isotope analyses. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, Berlin-Heidelberg-New York, pp 181–198Google Scholar
  17. Estrada-Medina H (2000) Caracterización y cartografía del recurso suelo del municipio de Hocabá, Yucatán. Tesis de Maestría en Manejo y Conservación de Recursos Naturales Tropicales. Mérida, Yucatán, MéxicoGoogle Scholar
  18. Estrada-Medina H, Graham RC, Allen MF, Jimenez-Osornio JJM (2005) Karstic Features and Tree Root Development in Yucatán, México. ASA-CSSA-SSSA International Annual Meeting, Nov 6–10:Salt Lake CityGoogle Scholar
  19. Ewe SML, Sternberg L, Busch DE (1999) Water use patterns of woody species in pineland and hammock communities of South Florida. For Ecol Manage 118:139–148CrossRefGoogle Scholar
  20. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137Google Scholar
  21. Farrington P, Turner JV, Gailitis V (1996) Tracing water uptake by jarrah (Eucalyptus marginata) trees using natural abundances of deuterium. Trees 11:9–15Google Scholar
  22. Flanagan LB, Ehleringer JR, Marshall JD (1992) Differential uptake of summer precipitation among co-occurring trees and shrubs in a pinyon-juniper woodland. Plant Cell Environ 15:831–836CrossRefGoogle Scholar
  23. Gillespie AR, Bocanegra-Ferguson DM, Jiménez-Osornio JJ (2004) The propagation of Ramón (Brosimum alicastrum Sw.; Moraceae) in Mayan homegardens of the Yucatan Peninsula of Mexico. New Forests 27:25–38CrossRefGoogle Scholar
  24. González-Herrera R, Sánchez-Pinto I, Gamboa-Vargas J (2002) Groundwater flow modeling in the Yucatán karstic aquifer, México. Hydrogeol J 10:539–552CrossRefGoogle Scholar
  25. Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2003) Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ 26:725–736CrossRefGoogle Scholar
  26. Hubbert KR, Beyers JL, Graham RC (2001) Roles of weathered bedrock and soil in seasonal water relations of Pinus jeffreyi and Arctostaphylos patula. Can J For Res 31:1947–1957CrossRefGoogle Scholar
  27. Jackson PC, Meinzer FC, Bustamante M, Goldstein G, Franco A, Rundel PW, Caldas L, Igler E, Causin F (1999) Partitioning of soil water among tree species in␣a Brazilian Cerrado ecosystem. Tree Physiol 19:717–724PubMedGoogle Scholar
  28. Jiménez-Osornio JJ, Ruenes-Morales MR, Montañés-Escalante P (1999) Agrodiversidad de los solares de la península de Yucatán. Red, Gestión de Recursos Naturales 14:30–40Google Scholar
  29. Leffler JA, Enquist BJ (2002) Carbon isotope composition of tree leaves from Guanacaste, Costa Rica: comparison across tropical forests and tree life history. J Trop Ecol 18:151–159CrossRefGoogle Scholar
  30. Montañez-Escalante P, García-Barrios L, Jiménez-Osornio J (2005) Quarry reclamation in Mérida, Yucatán, México: a review on achievements and current limitations. Trop Subtrop Agroecosyst 5:101–108Google Scholar
  31. Negreros-Castillo P, De Clerck FA J (1999) Establecimiento de sistemas agroforestales multiestrato. Red Gestión de Recursos Naturales 14:18–21Google Scholar
  32. Orellana R, Balam-Ku M, Bañuelos-Robles I, García E, González-Iturbe JA, Herrera-Cetina F, Vidal-López J (1999) Evaluación climática. In: García de Fuentes A, Córdoba y Ordóñez J, Chico Ponce de León P (eds) Atlas de Procesos Territoriales de Yucatán. Universidad Autónoma de Yucatán, Mérida, pp 163–182Google Scholar
  33. Peters CM, Pardo-Tejada E (1982) Brosimum alicastrum (Moraceae) uses and potential in Mexico. Econ Bot 36:166–175Google Scholar
  34. Rasmussen YD (1990) The effects of light and water stress on Brosimum alicastrum seedlings. Master Sci. Thesis. University of California, RiversideGoogle Scholar
  35. Rose KL, Graham RC, Parker DR (2003) Water source utilization by Pinus jeffreyi and Actostaphylos patula on thin soils over bedrock. Oecologia 134:46–54PubMedCrossRefGoogle Scholar
  36. Snyder KA, Williams DG (2000) Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agric For Meteorol 105:227–240CrossRefGoogle Scholar
  37. Sternberg LD L, Moreira MZ, Nepstad DC (2002) Uptake of water by lateral roots of small trees in an Amazonian Tropical Forest. Plant Soil 238:151–158CrossRefGoogle Scholar
  38. Stewart GR, Turnbull MH, Schmidt S, Erskine PD (1995) C-13 natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Aust J Plant Physiol 22:51–55CrossRefGoogle Scholar
  39. Stratton LC, Goldstein G, Meinzer FC (2000) Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest. Oecologia 124:309–317CrossRefGoogle Scholar
  40. Tu KP, Brooks PD, Dawson TE (2001) Using septum-capped vials with continuous-flow isotope ratio mass spectrometric analysis of atmospheric CO2 for Keeling plot applications. Rapid Comm Mass Spectrom 15:952–956CrossRefGoogle Scholar
  41. Weidie AE (1985) Geology of the Yucatan Platform. In: Ward WC (ed) Geology an hydrogeology of the Yucatan, Quaternary geology of northeastern Yucatan Peninsula. NOGS Publications, pp 1–19Google Scholar
  42. Weisbach C, Tiessen H, Jiménez-Osornio JJ (2002) Soil fertility during shifting cultivation in the tropical karst soils of Yucatan. Agronomie 22:253–263CrossRefGoogle Scholar
  43. Yurtsever Y, Gat JR (1981) Atmospheric waters. In: JR Gat, Gonfianti R (eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. International Atomic Energy Agency, Vienna, pp 103–142Google Scholar
  44. Zencich SJ, Froend RH, Turner JV, Gailitis V (2002) Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131:8–19CrossRefGoogle Scholar
  45. Zwieniecki MA, Newton M (1996) Seasonal pattern of water depletion from soil-rock profiles in a Mediterranean climate in southwestern Oregon. Can J For Res 2:1346–1352Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • José Ignacio Querejeta
    • 1
    • 3
    Email author
  • Héctor Estrada-Medina
    • 1
    • 2
  • Michael F. Allen
    • 1
  • Juan J. Jiménez-Osornio
    • 2
  • Rocío Ruenes
    • 2
  1. 1.Center for Conservation BiologyThe University of CaliforniaRiversideUSA
  2. 2.Departamento de Manejo y Conservación de Recursos Naturales Tropicales (PROTROPICO), Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de Yucatán (FMVZ-UADY)MéridaMéxico
  3. 3.Departamento de Conservación de Suelos y AguasCentro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)MurciaSpain

Personalised recommendations