Plant and Soil

, Volume 285, Issue 1–2, pp 333–345 | Cite as

Silicon Isotopic Fractionation by Banana (Musa spp.) Grown in a Continuous Nutrient Flow Device

  • S. Opfergelt
  • D. Cardinal
  • C. Henriet
  • X. Draye
  • L. André
  • B. Delvaux
Original Paper

Abstract

The determination of the plant-induced Si-isotopic fractionation is a promising tool to better quantify their role in the continental Si cycle. Si-isotopic signatures of the different banana plant parts and Si source were measured, providing the isotopic fractionation factor between plant and source. Banana plantlets (Musa acuminata Colla, cv Grande Naine) were grown in hydroponics at variable Si supplies (0.08, 0.42, 0.83 and 1.66 mM Si). Si-isotopic compositions were determined on a multicollector plasma source mass spectrometer (MC-ICP-MS) operating in dry plasma mode. Results are expressed as δ29Si relative to the NBS28 standard, with an average precision of ± 0.08‰ (±2σD). The fractionation factor 29ε between bulk banana plantlets and source solution is −0.40 ± 0.11‰. This confirms that plants fractionate Si isotopes by depleting the source solution in 28Si. The intra-plant fractionation Δ29Si between roots and shoots amounts to −0.21 ± 0.08‰. Si-isotopic compositions of the various plant parts indicate that heavy isotopes discrimination occurs at three levels in the plant (at the root epidermis, for xylem loading and for xylem unloading). At each step, preferential crossing of light isotopes leaves a heavier solution, and produces a lighter solution. Si-isotopic fractionation processes are further discussed in relation with Si uptake and transport in plants. These findings have important implications on the study of continental Si cycle.

Keywords

Musa Phytolith Silicon Si cycle Si-isotopic fractionation Si transport in plant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to A. Iserentant, C. Givron, P. Populaire (UCL), L. Monin, N. Dahkani, H. Doutrelepont (MRAC), J. de Jong and N. Mattielli (ULB) for their technical and scientific support. We thank J. Proost and L. Reylandt (UCL) for the SEM. This manuscript has greatly benefited from the constructive comm ents of two anonymous reviewers. This work was supported by the FNRS research convention No. 2.4629.05 and by the “Fonds Spécial de Recherche” (FSR) 2005 of the “Université catholique de Louvain”. S.O. is supported by the “Fonds National de la Recherche Scientifique” (FNRS) of Belgium as a Research Fellow, D.C. by the Federal Belgian Science Policy, C.H. by the “Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture” (FRIA) of Belgium, and X.D. is a Research Associate of the FNRS. L.A. thanks the FNRS for its financial support in the frame of the FRFC project #2.4512.00.

References

  1. Alexandre A, Meunier J-D, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682CrossRefADSGoogle Scholar
  2. Alleman LY, Cardinal D, Cocquyt C, Plisnier P-D, Descy J-P, Kimirei I, Sinyinza D, André L (2005) Silicon isotopic fractionation in Lake Tanganyika and its main tributaries. J Great Lakes Res 31:509–519CrossRefGoogle Scholar
  3. Basile-Doelsch I, Meunier J-D, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402PubMedCrossRefADSGoogle Scholar
  4. Cardinal D, Alleman LY, De Jong J, Ziegler K, André L (2003) Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J Anal At Spectrom 18:213–218CrossRefGoogle Scholar
  5. Cardinal D, Alleman LY, Dehairs F, Savoye N, Trull TW, André L (2005) Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochem Cycles 19:GB2007Google Scholar
  6. Cardinal D, Savoye N, Trull TW, Dehairs F, Kopczynska EE, Fripiat F, Tison J-L, André L (in press). Silicon isotopes in spring Southern Ocean diatoms: large zonal changes despite homogeneity among size fractions. Mar ChemGoogle Scholar
  7. Carignan J, Cardinal D, Eisenhauer A, Galy A, Rehkämper M, Wombacher F, Vigier N (2004) A reflection on Mg, Cd, Ca, Li and Si isotopic measurements and related reference materials. Geostand Geoanal Res 28:139–148Google Scholar
  8. Cary L, Alexandre A, Meunier JD, Boeglin JL, Braun JJ (2005) Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry 74:101–114CrossRefGoogle Scholar
  9. Chao TT, Sanzolone RF (1992) Decomposition techniques. J Geochem Explor 44:65–106CrossRefGoogle Scholar
  10. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16(4):1121CrossRefADSGoogle Scholar
  11. De La Rocha CL (2003) Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31:423–426CrossRefADSGoogle Scholar
  12. De La Rocha CL, Brzezinski MA, DeNiro MJ (1996) Purification, recovery, and laser-driven fluorination of silicon dissolved and particulate silica for the measurement of natural stable isotope abundances. Anal Chem 68:3746–3750CrossRefGoogle Scholar
  13. De La Rocha CL, Brzezinski MA, DeNiro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61:5051–5056CrossRefADSGoogle Scholar
  14. De La Rocha CL, Brzezinski MA, DeNiro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64:2467–2477CrossRefADSGoogle Scholar
  15. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433:728–731PubMedCrossRefADSGoogle Scholar
  16. Ding T, Wan D, Wang C, Zhang F (2003) Large and systematic silicon isotope fractionation discovered in single sticks of bamboo. Goldschmidt Conf. Abstracts, A79Google Scholar
  17. Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68:205–216CrossRefADSGoogle Scholar
  18. Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41–50CrossRefGoogle Scholar
  19. Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46:1449–1458CrossRefADSGoogle Scholar
  20. Epstein E (1999) Silicon. Annu Rev Plant Phys 50:641–664CrossRefGoogle Scholar
  21. Geis JW (1978) Biogenic opal in three species of gramineae. Ann Bot 42:1119–1129Google Scholar
  22. Hildebrand M, Volcani BE, Gassmann W, Schroeder JI (1997) A gene family of silicon transporters. Nature 385:688–689PubMedCrossRefADSGoogle Scholar
  23. Hinsinger P, Barros ONF, Benedetti MF, Noack Y, Callot G (2001) Plant-induced weathering of a basaltic rock: experimental evidence. Geochim Cosmochim Acta 65:137–152CrossRefADSGoogle Scholar
  24. Jones LHP, Handreck KA (1965) Studies of silica in the oat plant. III. Uptake of silica from soils by plant. Plant Soil 23:79–96CrossRefGoogle Scholar
  25. Jones LHP, Handreck KA (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149CrossRefGoogle Scholar
  26. Lahav E (1995) Banana nutrition. In Gowen S (ed) Bananas and plantains. Chapman and Hall, London, pp 258–316Google Scholar
  27. Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Plant Sci 29:135–163CrossRefADSGoogle Scholar
  28. Lux A, Luxova M, Abe J, Morita S, Inanaga S (2003a) Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant Soil 255:85–91CrossRefGoogle Scholar
  29. Lux A, Luxova M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003b) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441CrossRefGoogle Scholar
  30. Ma J F, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  31. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, The Netherlands, pp 17–39Google Scholar
  32. Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289 PubMedCrossRefGoogle Scholar
  33. Madella M, Alexandre A, Ball T (2005) International Code for Phytolith Nomenclature 1.0. Ann Bot 96:253–260PubMedCrossRefGoogle Scholar
  34. Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840CrossRefGoogle Scholar
  35. Mbida CM, Doutrelepont H, Vrydaghs L, Swennen RL, Swennen RJ, Beeckman H, de Langhe E, de Maret P (2001) First archaeological evidence of banana cultivation in central Africa during the third millenium before present. Veg Hist Archaeobot 10:1–6CrossRefGoogle Scholar
  36. Meunier JD (2003) The role of plants in the transfer of silicon at the surface of the continents. CR Geosci 335:1199–1206CrossRefGoogle Scholar
  37. Milligan AJ, Varela DE, Brzezinski MA, Morel FMM (2004) Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnol Oceanogr 49:322–329CrossRefGoogle Scholar
  38. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261PubMedCrossRefGoogle Scholar
  39. Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283PubMedCrossRefGoogle Scholar
  40. Motomura H, Fujii T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carriere) Rehder (Poaceae: Bambusoideae). Ann Bot 93:235–248PubMedCrossRefGoogle Scholar
  41. Opfergelt S, Cardinal D, Henriet C, André L, Delvaux B (2006) Silicon isotope fractionation between plant parts in banana: in situ vs. in vitro. J Geochem Explor 88:224–227CrossRefGoogle Scholar
  42. Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440CrossRefGoogle Scholar
  43. Ragueneau O, Savoye N, Del Amo Y, Cotten J, Tardiveau B, Leynaert A (2005) A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si:Al ratios to correct for the mineral interference. Cont Shelf Res 25:697–710CrossRefADSGoogle Scholar
  44. Raven JA (1983) The transport and function of silicon plants. Biol Rev 58:179–207Google Scholar
  45. Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52: 381–401PubMedGoogle Scholar
  46. Robinson JC (1995) Systems of cultivation and management. In: Gowen S (ed). Bananas and plantains. Chapman and Hall, London, pp 15–65Google Scholar
  47. Rufyikiri G, Nootens D, Dufey JE, Delvaux B (2001) Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions II Water and nutrient uptake. Fruits 56:3–14CrossRefGoogle Scholar
  48. Rufyikiri G, Nootens D, Dufey JE, Delvaux B (2004) Mobilization of aluminium and magnesium by roots of banana (Musa spp.) from kaolinite and smectite clay minerals. Appl Geochem 19:633–643CrossRefGoogle Scholar
  49. Sangster AG, Hodson MJ (1986) Silica in higher plants. In: Evered D, Oȁ9Connon M (ed) Silicon biogeochemistry. J. Wiley, Chichester, pp 90–107Google Scholar
  50. Sangster AG, Parry DW (1981) Ultrastructure of silicon deposits in higher plants. In Simpson TL, Volcani BE (eds). Silicon and siliceous structures in biological systems. Springer-Verlag, New York, pp 383–407Google Scholar
  51. Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32PubMedCrossRefGoogle Scholar
  52. Stumm W, Morgan JJ (1996) Aquatic chemistry—chemical equilibria and rates in natural waters (ed). J. Wiley and sons. New York. 1022 ppGoogle Scholar
  53. Takahashi K, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comment Agr Food Chem 2:99–122Google Scholar
  54. Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436CrossRefGoogle Scholar
  55. Tomlinson PB (1969) Anatomy of the monocotyledons III Commelinales-Zingiberales. Clarendon Press, OxfordGoogle Scholar
  56. Varela DE, Pride CJ, Brzezinski MA (2004) Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochem Cycles 18:GB1047CrossRefADSGoogle Scholar
  57. Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) Isotopic discrimination of zinc in higher plants. New Phytol 165:703–710PubMedCrossRefGoogle Scholar
  58. Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104CrossRefADSGoogle Scholar
  59. Ziegler K, Chadwick OA, White AF, Brzezinski MA (2005a) δ30Si systematics in a granitic saprolite, Puerto Rico. Geology 33:817–820CrossRefADSGoogle Scholar
  60. Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005b) Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim Cosmochim Acta 69:4597–4610CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • S. Opfergelt
    • 1
    • 2
  • D. Cardinal
    • 2
  • C. Henriet
    • 1
  • X. Draye
    • 3
  • L. André
    • 2
  • B. Delvaux
    • 1
  1. 1.Soil Science UnitUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of Geology and MineralogyMusée Royal de l’Afrique CentraleTervurenBelgium
  3. 3.Crop Physiology and Plant BreedingUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations