Plant and Soil

, Volume 282, Issue 1–2, pp 361–378 | Cite as

Hydraulic Lift in Cork Oak Trees in a Savannah-Type Mediterranean Ecosystem and its Contribution to the Local Water Balance

  • Cathy Kurz-Besson
  • Dennis Otieno
  • Raquel Lobo do Vale
  • Rolf Siegwolf
  • Markus Schmidt
  • Alastair Herd
  • Carla Nogueira
  • Teresa Soares David
  • Jorge Soares David
  • John Tenhunen
  • João Santos Pereira
  • Manuela Chaves


The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus  suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.


δ18hydraulic lift Quercus  suber root biomass soil δD fractionation soil water potential 


hydraulic lift


leaf water potential


soil temperature


soil water content


soil water potential


vapour pressure deficit


tree transpiration



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrow, G M 1962Introduction to Molecular SpectroscopyMacGraw-HillNew York, USA89Google Scholar
  2. Boutton, T W, Archer, S R, Midwood, A J 1999Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical savannaRapid Commun. Mass. Sp.1312631277CrossRefGoogle Scholar
  3. Brooks, J R, Meinzer, F C, Coulomber, R, Gregg, J 2002Hydraulic redistribution of soil water during summer drought in two contrasting pacific Northwest coniferous forestsTree Physiol.2211071117PubMedGoogle Scholar
  4. Caldwell, M M, Dawson, T E, Richards, J H 1998Hydraulic lift: consequences of water efflux from the roots of plantsOecologia113151161CrossRefGoogle Scholar
  5. Canadell, J, Zedler, P H 1995Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and ChileArroyo, M T KZedler, P HFox, M D. eds. Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and AustraliaSpringerBerlin177210Google Scholar
  6. Canadell, J, Jackson, R B, Ehleringer, J R, Mooney, H A, Sala, O E, Schulze, E D 1996Maximum rooting depth of vegetation types at the global scaleOecologia10813CrossRefGoogle Scholar
  7. Chaves, M M, Maroco, J P, Pereira, J S 2003Understanding plant response to drought – from genes to the whole plantFunct. Plant Biol.30239264CrossRefGoogle Scholar
  8. Craig, H 1961Isotopic variations in meteoric watersScience13317021703PubMedGoogle Scholar
  9. Dambrinne E, Pollier B and Bishop K 1993 Le delta 18O de la sève xylémique indique la profondeur moyenne à laquelle l’arbre absorbe l’eau. In Utilisation des isotopes stables pour l’étude du fonctionnement des plantes. Eds. P Maillard and R Bonhomme, Les colloques 70. pp. 115–121. Inra Editions, ParisGoogle Scholar
  10. Dansgard, W 1964Stable isotopes in precipitationTellus16436468CrossRefGoogle Scholar
  11. David T S 2000 Intercepção da precipitação e transpiração em árvores isoladas de Q. rotundifolia Lam. Doctoral thesis, Universidade Técnia de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal. 155 ppGoogle Scholar
  12. David, T S, Ferreira, M I, Cohen, S, Pereira, J S, David, J S 2004Constraints on transpiration from an evergreen oak tree in southern PortugalAgric. For. Meteorol.122193205CrossRefGoogle Scholar
  13. Dawson, T E 1993aHydraulic lift and water use by plants: implications for water balance, performance, and plant–plant interactionsOecologia95565574Google Scholar
  14. Dawson, T E 1993bWater sources of plants as determined from xylem–water isotopic composition: perspectives on plant competition, distribution, and water relationsEhleringer, J RHall, A EFarquhar, G D eds. Stable Isotopes and Plant Carbon–Water RelationsAcademic Press, IncNew York555Google Scholar
  15. Dawson, T E 1998Fog in the California redwood forest: ecosystem inputs and use by plantsOecologia117476485CrossRefGoogle Scholar
  16. Dawson, T E, Ehleringer, J R 1993Isotopic enrichment of water in the ‘woody’ tissues of plants: implications for plant water source, water uptake, and other studies, which use the stable isotopic composition of celluloseGeochim. Cosmochim. Acta5734873492CrossRefGoogle Scholar
  17. DeWalle, D R, Edwards, P J, Swistock, B R, Aravena, R, Drimmie, R J 1997Seasonal isotope hydrology of three Appalachian forest catchmentsHydrol. Process.1118951906CrossRefGoogle Scholar
  18. Donovan, L A, Ehleringer, J R 1994Water stress and use of summer precipitation in a Great Basin shrub communityFunct. Ecol.8289297CrossRefGoogle Scholar
  19. Ehleringer, J R, Dawson, T E 1992Water uptake by plants: perspectives from stable isotope compositionPlant Cell Environ.1510731082CrossRefGoogle Scholar
  20. Ehleringer, J R, Phillips, S L, Schuster, W F S, Sandquist, D R 1991Differential utilization of summer rains by desert plants: implications for competition and climate changeOecologia88430434CrossRefGoogle Scholar
  21. Emerman, S H, Dawson, T E 1996Hydraulic lift and its influence on the water content of the rhizosphere, an example from sugar maple, Acer  saccharum Oecologia108273278Google Scholar
  22. Espeleta, J F, West, J B, Donovan, L A 2004Species-specific patterns of hydraulic lift in co-occuring adult trees and grasses in a sandhill communityOecologia138341349PubMedCrossRefGoogle Scholar
  23. Filella, I, Peñuelas, J 2003Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary historyOecologia1375161PubMedCrossRefGoogle Scholar
  24. Flanagan, L B, Ehleringer, J R, Marshall, J D 1992Differential uptake of summer precipitation among co-occuring trees and shrubs in pinyon-juniper woodlandPlant Cell Environ.15831836CrossRefGoogle Scholar
  25. Granier, A 1985Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbresAnn. Sci. For.42193200Google Scholar
  26. Granier, A 1987Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermiqueAnn. Sci. For.44114CrossRefGoogle Scholar
  27. Grieu, P, Lucero, D W, Ardiani, R, Ehleringer, J R 2001The mean depth of soil water uptake by two temperate grassland species over time subjected to mild soil water deficit and competitive associationPlant and Soil.203197209CrossRefGoogle Scholar
  28. Horton, J L, Hart, S C 1998Hydraulic lift: a potentially important ecosystem processTrends Ecol. Evol.13232235CrossRefGoogle Scholar
  29. Jackson, P C, Cavelier, J, Goldstein, G, Meinzer, F C, Holbrook, N M 1995Partitioning of water resources among plants of a lowland tropical forestOecologia101197203CrossRefGoogle Scholar
  30. Jackson, R B, Moore, L A, Hoffmann, W A, Pockman, W T, Linder, C R 1999Ecosystem rooting depth determined with caves and DNAProc. Natl. Acad. Sci. U.S.A., Ecology9611,38711,392Google Scholar
  31. Jackson, R B, Sperry, J S, Dawson, T E 2000Root water uptake and transport: using physiological processes in global predictionsTrends Plant Sci.5482488PubMedCrossRefGoogle Scholar
  32. Joffre, R, Rambal, S, Ratte, J P 1999The dehesa system of southern Spain and Portugal as a natural ecosystem mimicAgrofor. Syst.455779CrossRefGoogle Scholar
  33. Klepper, B 2001Crop root system response to irrigationIrrigation Sci.12105108Google Scholar
  34. Kolb, T E, Hart, S C, Amundson, R 1997Boxelder water source and physiology at perennial and ephemeral stream sites in ArizonaTree Physiol.17151160PubMedGoogle Scholar
  35. Lin, G, Sternberg, S L 1993Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plantsEhleringer, J RHall, A EFarquhar, G D eds. Stable Isotopes and Plant Carbon–Water RelationsAcademic Press, IncNew York555Google Scholar
  36. Lin, G, Phillips, S L, Ehleringer, J R 1996Monsoonal precipitation responses of shrubs in a cold desert community on the Colorado PlateauOecologia106817Google Scholar
  37. Ludwig, F, Dawson, T E, Kroon, H, Berendse, F, Prins, H H 2003Hydraulic lift in Acacia tortilis trees on an East African savannaOecologia134293300PubMedGoogle Scholar
  38. Mendes A C 1998 Tendências de evolução da economia do sector da cortiça em Portugal. In Cork oak and oak, sobreiro e cortiça. European conference on cork oak and oak (5–7 May 1997). Ed. Helena Pereira. Centro de Estudos Florestais. pp. 469–492. Instituto Superior de Agronomia, LisboaGoogle Scholar
  39. Midwood, A J, Boutton, T W, Archer, S R, Watts, S E 1998Water use by woody plants on contrasting soils in a savanna parkland: assessment with δ2H and δ18OPlant and Soil.2051324CrossRefGoogle Scholar
  40. Millikin Ishikawa, C, Bledsoe, C S 2000Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: evidence for hydraulic liftOecologia125459465CrossRefGoogle Scholar
  41. Miranda, P, Coelho, F E S, Tomé, A R, Valente, M A 2002Twentieth century portuguese climate and climate scenariosSantos, F DForbes, KMoita, R eds. Climate Change in Portugal. Scenarios, Impacts, and Adaptation Measures – SIAM ProjectGradivaLisboa2583Google Scholar
  42. Mooney, H A, Gulmon, S L, Rundel, P W, Ehleringer, J R 1980Further observations on the water relations of Prosopis  tamarugo of the Northern Atacama desertOecologia44177180CrossRefGoogle Scholar
  43. Otieno D O, Kurz-Besson C, Liu J, Schmidt M W T, Lobo do Vale R, David T S, Siegwolf R, Pereira J S and Tenhunen J D Seasonal variations in soil and plant water status in a Quercus  suber L. stand: roots as determinants of tree productivity and survival in the Mediterranean-type ecosystem. Plant and Soil (In press)Google Scholar
  44. Peñuelas, J, Filella, I 2003Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE SpainEnviron. Exp. Bot.49201208CrossRefGoogle Scholar
  45. Pereira, J S, David, J S, David, T S, Caldeira, M C, Chaves, M M 2004Carbon and water fluxes in mediterranean-type ecosystems – constraints and adaptationsEsser, KLüttge, UBeyschlag, WMurata, J eds. Progress in BotanySpringer-VerlagBerlin467498Google Scholar
  46. Pereira P M and Fonseca M P 2003 Nature vs. nurture: the making of the montado ecosystem. Conserv. Ecol. 7: Scholar
  47. Querejeta, J I, Egerton-Warburton, L M, Allen, M F 2003Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil dryingOecologia1345564PubMedCrossRefGoogle Scholar
  48. Reis, R M M, Gonçalves, M Z 1987Caracterização climática da região agrícola do Alentejo. O clima de Portugal, Fascículo XXXIVINMGLisboa226Google Scholar
  49. Richards, J M, Caldwell, M M 1987Hydraulic lift: substantial nocturnal water transport between layers by Artemisia tridentada rootsOecologia73486489CrossRefGoogle Scholar
  50. Roberts, J 2000The influence of physical and physiological characteristics of vegetation on their hydrological responseHydrol. Process.1428852901CrossRefGoogle Scholar
  51. Ryel, R J, Caldwell, M M, Leffler, A J, Yoder, C K 2003Rapid soil moisture recharge to depth by roots in a stand of Artemisia tridentata Ecology84757764Google Scholar
  52. Ryel, R J, Caldwell, M M, Yoder, C K, Or, D, Leffler, A J 2002Hydraulic redistribution in a stand of Artemisia tridentada: evaluation of benefits to transpiration assessed with a simulation modelOecologia130173184Google Scholar
  53. Sankaran, M, Ratnam, J, Hanan, N P 2004Tree-grass coexistence in savannas revisited – insights from an examination of assumptions and mechanisms invoked in existing modelsEcol. Lett.7480490CrossRefGoogle Scholar
  54. Saurer, M, Robertson, I, Siegwolf, R, Leuenberger, M 1998Oxygen isotope analysis of cellulose: an interlaboratory comparisonAnal. Chem.7020742080CrossRefGoogle Scholar
  55. Scholander, P F, Hammel, H T, Bradstreet, E D, Hemmingsen, E A 1965Sap pressure in vascular plantsScience148339346PubMedGoogle Scholar
  56. Sekiya, N, Yano, K 2004Do pigeon pea and Sesbania supply groundwater to intercropped maize through hydraulic lift? Hydrogen stable isotope investigation of xylem watersField Crop. Res.86167173CrossRefGoogle Scholar
  57. Tanigushi, M, Nakayama, T, Tase, N, Shimada, J 2001Stable isotope studies of precipitation and river water in the Lake Biwa basin, JapanHydrol. Process.14539556CrossRefGoogle Scholar
  58. Thornburn, P J, Mensforth, L J, Walker, G R 1994Reliance of creek-side river red gums on creek waterAust. J. Mar. Fresh Res.4514391443CrossRefGoogle Scholar
  59. Valentini, R, Scarascia Mugnozza, G E, Ehleringer, J R 1992Hydrogen and carbon isotope ratios of selected species of a Mediterranean macchia ecosystemFunct. Ecol.6627631CrossRefGoogle Scholar
  60. Walter, H 1973Vegetation of the Earth and Ecological Systems of the Geo-BiosphereSpringer-VerlagNew York.274Google Scholar
  61. Washburn, E W, Smith, E R 1934The isotopic fractionation of water by physiological processesScience79188189PubMedGoogle Scholar
  62. White, J W C, Cook, E R, Lawrence, J R, Broecker, W S 1985The D/H ratios of sap in trees: implication for water sources and tree ring D/H ratiosGeochim. Cosmochim. Acta.49237246CrossRefGoogle Scholar
  63. Williams, D G, Ehleringer, J R 2000Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlandsEcol. Monogr.70517537CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Cathy Kurz-Besson
    • 1
  • Dennis Otieno
    • 3
  • Raquel Lobo do Vale
    • 1
  • Rolf Siegwolf
    • 2
  • Markus Schmidt
    • 3
  • Alastair Herd
    • 1
  • Carla Nogueira
    • 1
  • Teresa Soares David
    • 4
  • Jorge Soares David
    • 1
  • John Tenhunen
    • 3
  • João Santos Pereira
    • 1
  • Manuela Chaves
    • 1
    • 5
  1. 1.Instituto Superior de AgronomiaLisboaPortugal
  2. 2.Laboratory of Atmospheric ChemistryPaul Scherrer InstituteVilligen-PSISwitzerland
  3. 3.Department of Plant EcologyUniversity of BayreuthBayreuthGermany
  4. 4.Estação Florestal NacionalINIAPOeirasPortugal
  5. 5.Instituto de Tecnologia Química e BiológicaOeirasPortugal

Personalised recommendations