Advertisement

Plant and Soil

, 277:117 | Cite as

Characteristics of Arsenic Accumulation by Pteris and non-Pteris Ferns

  • T. Luongo
  • L.Q. Ma
Article

Abstract

This research was conducted to understand the mechanisms of arsenic hyperaccumulation in Pteris vittata by comparing the characteristics of arsenic accumulation in Pteris and non-Pteris ferns. Seven Pteris (P.vittata, P. Cretica Rowerii, P. Cretica Parkerii, P. Cretica Albo-lineata, P. Quadriavrita, P. Ensiformis and P. Dentata) and six non-Pteris (Arachnoides simplicor, Didymochlaena truncatula, Dryopteris atrata, Dryopteris erythrosora, Cyrtomium falcatum, and Adiantum hispidulum) ferns were exposed to 0, 1 and 10 mgL−1 arsenic as sodium arsenate for 14-d in hydroponic systems. As a group, the Pteris ferns were more efficient in arsenic accumulation than the non-Pteris ferns, with P. vittata being the most efficient followed by P. cretica. When exposed to 10 mg L−1 As, arsenic concentrations in the fronds and roots of P. vittata were 1748 and 503 mg kg−1. Though not all Pteris ferns were efficient in accumulating arsenic, none of the non-Pteris ferns was an efficient As accumulator (the highest concentration being 452 mg kg−1). The fact that frond arsenic concentrations in the control were highly correlated with those exposed to As (r 2 = 0.76–0.87) may suggest that they may be used as a preliminary tool to screen potential arsenic hyperaccumulators. Our research confirms that the ability of P. vittata to translocate arsenic from the roots to the fronds (73–77% As in the fronds), reduce arsenate to arsenite in the fronds (>50% AsIII in the fronds), and maintain high concentrations of phosphate in the roots (48–53% in the roots) all contributed to its arsenic tolerance and hyperaccumulation.

Keywords

arsenic detoxification hyperaccumulation mechanisms metabolism uptake toxicity 

References

  1. Baker, A J M, McGrath, S P, Reeves, R D, Smith, J A C 2000Metal hyperaccumulator plants: a review of the ecology and physiology of biological resource for phytoremediation of metal-polluted soilsN, TerryG, Banuelos eds. Phytoremediation of Contaminated Soil and WaterCRCBoca Raton85107Google Scholar
  2. Cai, Y., Su, J, Ma, L Q 2003Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elementsEnviron. Pollution1296978Google Scholar
  3. Carvalho, L H M, Koe, T D, Tavares, P B 1998An improved molybdenum blue method for simultaneous determination of inorganic phosphate and arsenateEcotoxicol. Environ. Restor.11319Google Scholar
  4. Chen, T., Wei, C, Huang, Z, Huang, Q, Lu, Q, Fan, Z 2002Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulationChinese Sci. Bull.47902905Google Scholar
  5. Francesconi, K, Visoottiviseth, P, Sridokchan, W, Goessler, W 2002Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soilsScience Total Environment2842735CrossRefGoogle Scholar
  6. Goldsbrough, P 2000Metal tolerance in plants: the role of phytochelatins and metallothioneinsN, TerryG, Banuelos eds. Phytoremediation of Contaminated Soil and WaterLewis PublishersBoca Raton221233Google Scholar
  7. Kabata-Pendias, A, Pendias, H 1991Arsenic. Trace Elements in Soils and Plants2CRC PressBoca Raton, FL203209Google Scholar
  8. Komar K, Ma L Q, Rockwood D and Syed A 1998 Identification of arsenic tolerant and hyperaccumulating plants from arsenic contaminated soils in Florida. Agronomy Abstract, 343.Google Scholar
  9. Lombi, E, Zhao, F J, Fuhrmann, M, Ma, L Q, McGrath, S P 2002Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata New Phytologist156195203CrossRefGoogle Scholar
  10. Ma, L Q, Komar, K M, Tu, C, Zhang, W, Cai, Y 2001aA fern that hyperaccumulates arsenicNature409579CrossRefGoogle Scholar
  11. Ma L Q, Komar K M, and Kennelley E D 2001b. Methods for removing pollutants from contaminated soil materials with a fern plant. USA Patent US patent No. 6,302,942. Date Issued: Issue date 10/16/01.Google Scholar
  12. Mattusch, J, Wennrich, R, Schmidt, A C, Reisser, W 2000Determination of arsenic species in water, soils and plants Fresenius’J. Analytical. Chem.366200203Google Scholar
  13. Meharg, A A 2002Arsenic and old plantsNew. Phytol.15618CrossRefGoogle Scholar
  14. Meharg, A A 2003Variation in arsenic accumulation hyperaccumulation in ferns and their alliesNew Phytol.1572531Google Scholar
  15. Meharg, A A, Macnair, M R 1991Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L New Phytol.117225231Google Scholar
  16. Meharg, A A, Hartley-Whitaker, J 2002Arsenic uptake and metabolism in arsenic resistant and nonresistant plant speciesNew Phytol1542943CrossRefGoogle Scholar
  17. Meng, X, Korfiatis, G P, Jing, C, Christodoulatos, C 2001Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extractionEnviron. Sci. Technol.3534763481CrossRefPubMedGoogle Scholar
  18. Peoples, S A 1975Review of arsenical pesticidesE A, Woolson eds. Arsenical pesticides, Vol. ACS symposium series 7ACSWashington, D.C112Google Scholar
  19. Rauser, W E 1999Structure and function of metal chelators produced by plantsCell Biochem. Biophys.311948PubMedGoogle Scholar
  20. Salt, D E, Smith, R D, Raskin, I 1998PhytoremediationAnnu. Rev. Plant Physiol. Plant Mol. Biol.4964368CrossRefPubMedGoogle Scholar
  21. Tu, C, Ma, L Q 2002Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator Ladder BrakeJ. Environ. Qual.31641647PubMedGoogle Scholar
  22. Tu, C, Ma, L Q, Bondada, B 2002Arsenic accumulation in the hyperaccumulator Chinese Brake (Pteris vittata L.) and its utilization potential for phytoremediationJ. Environ. Qual.3116711675PubMedGoogle Scholar
  23. Tu, C, Ma, L Q 2003Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata LPlant Soil249373382CrossRefGoogle Scholar
  24. Tu, C, Ma, L Q, Zhang, W, Cai, Y, Harris, W G 2003Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.)Environ. Pollution124223230CrossRefGoogle Scholar
  25. Tu, S, Ma, L Q 2003aArsenic absorption, speciation and thiol formation in excised parts of Pteris vittata in the presence of phosphorusEnviron. Exp. Bot51121131Google Scholar
  26. Tu, S, Ma, L Q 2003bInteractive Effects of pH, As and P on growth and As/P uptake in hyperaccumulator Pteris vittata Environ. Exp. Bot.50243251CrossRefGoogle Scholar
  27. Tu, S, Ma, L Q 2003cComparison of arsenic uptake and distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Nephrolepis exaltata LJ. Plant Nutrition2712271242Google Scholar
  28. Venkobachar, C 1990Metal removal by waste biomass to upgrade wastewater treatment plantsWater Sci. Technol.2278Google Scholar
  29. Visoottiviseth, P, Francesconi, K, Sridokchan, W 2002The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated landEnviron. Pollution.118453461CrossRefGoogle Scholar
  30. Wang, J, Zhao, F J, Meharg, A A, Raab, A, Feldmann, J, McGrath, S P 2002Mechanisms of arsenic hyperaccumulation in Pteris vittata: uptake kinetics, interactions with phosphate, and arsenic speciationPlant Physiol.13015521561PubMedGoogle Scholar
  31. Webb, S M, Gaillard, J F, Ma, L Q, Tu, C 2003XAS speciation of arsenic in a hyperaccumulating fernEnviron. Sci. Technol.37754760CrossRefPubMedGoogle Scholar
  32. Zenk, M H 1996Heavy metal detoxification in higher plants-a reviewGene.1792130CrossRefPubMedGoogle Scholar
  33. Zhang, W, Cai, Y, Tu, C, Ma, L Q 2002Arsenic speciation and distribution in an arsenic hyperaccumulating plantSci. Total Environ.300167177CrossRefPubMedGoogle Scholar
  34. Zhao, F J, Dunham, S J, McGrath, S P 2002Arsenic hyperaccumulation by different fern speciesNew Phytol.1562731CrossRefGoogle Scholar
  35. Zhao, F J, Wang, J R, Barker, J H A, Schat, H, Bleeker, P M, McGrath, S P 2003The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata New Phytol.159403410Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Soil and Water Science DepartmentUniversity of Florida GainesvilleUSA

Personalised recommendations