Plant and Soil

, Volume 274, Issue 1–2, pp 51–78 | Cite as

Root-based N2-fixing Symbioses: Legumes, Actinorhizal Plants, Parasponia sp. and Cycads

  • J. Kevin Vessey
  • Katharina Pawlowski
  • Birgitta Bergman
Article

Abstract

In the mutualistic symbioses between legumes and rhizobia, actinorhizal plants and Frankia, Parasponia sp. and rhizobia, and cycads and cyanobacteria, the N2-fixing microsymbionts exist in specialized structures (nodules or cyanobacterial zones) within the roots of their host plants. Despite the phylogenetic diversity among both the hosts and the microsymbionts of these symbioses, certain developmental and physiological imperatives must be met for successful mutualisms. In this review, phylogenetic and ecological aspects of the four symbioses are first addressed, and then the symbioses are contrasted and compared in regard to infection and symbio-organ development, supply of carbon to the microsymbionts, regulation of O2 flux to the microsymbionts, and transfer of fixed-N to the hosts. Although similarities exist in the genetics, development, and functioning of the symbioses, it is evident that there is great diversity in many aspects of these root-based N2-fixing symbioses. Each symbiosis can be admired for the elegant means by which the host plant and microsymbiont integrate to form the mutualistic relationships so important to the functioning of the biosphere.

Key words

actinorhizal plants coralloid roots cyanobacteria cycads Frankia legume mutualism N2 fixation nod genes nif genes nodulation Nostoc Parasponia Rhizobium symbioses 

References

  1. Adams, D G 2002

    Cyanobacteria in symbiosis with hornworts and liverworts

    Rai, A NBergman, BRasmussen, U eds. Cyanobacteria in SymbiosisKluwer Academic PublishersDordrecht117135
    Google Scholar
  2. Ahern, C P, Staff, I A 1994Symbiosis in cycads: The origin and development of corraloid roots in Macrozamia communis (Cycadaceae)Am. J. Bot.8115591570Google Scholar
  3. Akkermans, A D L, Huss-Danell, K, Roelofsen, W 1981Enzymes of the tricarboxylic acid cycle and the malate–aspartate shuttle in the N2 nitrogen-fixing endophyte of Alnus glutinosaPhysiol. Plant.53289294Google Scholar
  4. Allaway, D, Lodwig, E M, Crompton, L A, Wood, M, Parsons, R, Wheeler, T R, Poole, P S 2000Identification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroidsMol. Microbiol.36508515PubMedCrossRefGoogle Scholar
  5. Allen, O N, Allen, E K 1981The Leguminosae: A Source Book of Characteristics, Uses and NodulationThe University of Wisconsin PressMadison812Google Scholar
  6. Allen, G C, Elkan, G H 1990Growth, respiration, and polypeptide patterns of Bradyrhizobium sp. (Arachis) strain 3G4b20 from succinate- or oxygen-limited continuous culturesAppl. Environ. Microbiol.5610251032PubMedGoogle Scholar
  7. Appleby, C A, Tjepkema, J D, Trinick, M J 1983Hemoglobin in a nonleguminous plant, Parasponia: Possible genetic origin and function in nitrogen fixationScience220951953PubMedGoogle Scholar
  8. Baginsky, C, Brito, B, Imperial, J, Palacios, J M, Ruiz-Argueso, T 2002Diversity and evolution of hydrogenase systems in rhizobiaAppl. Environ. Microbiol.6849154924PubMedCrossRefGoogle Scholar
  9. Baker, A, Dodd, C D, Parsons, R 1996Identification of amino compounds synthesized and translocated in symbiotic ParasponiaPlant Cell Environ.1912491260Google Scholar
  10. Baker,  1992

    Actinorhizal symbiosis

    Stacey, GEvans, HBurris, R eds. Biological Nitrogen FixationChapman & HallNew York259292
    Google Scholar
  11. Becana, M, Klucas, R V 1992Oxidation and reduction of leghemoglobin in root nodules of leguminous plantsPlant Physiol.9812171221PubMedGoogle Scholar
  12. Becking, J H 1979Root–nodule symbiosis between Rhizobium and Parasponia parviflora (Ulmaceae)Plant Soil51289296CrossRefGoogle Scholar
  13. Becking, J H 1983aThe Parasponia parvifloraRhizobium symbiosis. Host specificity, growth and nitrogen fixation under various conditionsPlant Soil75309342Google Scholar
  14. Becking, J H 1983bThe Parasponia parvifloraRhizobium symbiosis. Isotopic nitrogen fixation, hydrogen evolution and nitrogen-fixation, hydrogen evolution and nitrogen-fixation efficiency, and oxygen relationsPlant Soil75343360Google Scholar
  15. Becking, J H 1992

    The Rhizobium symbiosis of the nonlegume Parasponia

    Stacey, GBurris, R HEvans, H J eds. Biological Nitrogen Fixation: Achievements and ObjectivesChapman & HallNew York497559
    Google Scholar
  16. Beckwith, J, Tjepkema, J D, Cashon, R E, Schwintzer, C R, Tisa, L S 2002Hemoglobin in five genetically diverse Frankia strainsCan. J. Microbiol.4810481055PubMedCrossRefGoogle Scholar
  17. Bender, G L, Goydych, W, Rolfe, B G, Nayudu, M 1987aThe role of Rhizobium conserved and host specific nodulation genes in the infection of the non-legume Parasponia andersoniiMol. Gen. Gen.210299306Google Scholar
  18. Bender, G L, Nayudu, M, Goydych, W, Rolfe, B G 1987bEarly infection events in nodulation of the non-legume Parasponia andersonii by BradyrhizobiumPlant Sci.51285293CrossRefGoogle Scholar
  19. Benoit, L F, Berry, A M 1990

    Methods for production and use of actinorhizal plants in forestry, low maintenance landscapes and revegetation

    Schwintzer, C RTjepkema, J D eds. The Biology of Frankia and Actinorhizal PlantsAcademic PressNew York281297
    Google Scholar
  20. Benson, D R, Arp, D J, Burris, R H 1980Hydrogenase in actinorhizal root nodules and root nodule homgenatesJ. Bacteriol.142138144PubMedGoogle Scholar
  21. Benson, D R, Hanna, D 1983Frankia diversity in an alder stand as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins [Nitrogen-fixing symbiosis with actinomycetes]Can. J. Bot.6129192923Google Scholar
  22. Benson, D R, Silvester, W B 1993Biology of Frankia strains, actinomycete symbionts of actinorhizal plantsMicrobiol. Rev.57293319PubMedGoogle Scholar
  23. Berg, R H 1999Frankia forms infection threadsCan. J. Bot.7713271333Google Scholar
  24. Berg, R H, McDowell, L 1987aEndophyte differentiation in Casuarina actinorhizaeProtoplasma136104117CrossRefGoogle Scholar
  25. Berg, R H, McDowell, L 1987bCytochemistry of the wall of infected cells in Casuarina actinorhizaeCan. J. Bot.6620382047Google Scholar
  26. Berger, D, Altmann, T 2000A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thalianaGenes Dev.1411191131PubMedGoogle Scholar
  27. Bergersen, F J 1996Delivery of O2 to bacteroids in soybean nodule cells: Consideration of gradients of concentration of free, dissolved O2 in a near symbiosomes and beneath intercellular spacesProtoplasma191920CrossRefGoogle Scholar
  28. Bergman, B 2002

    The NostocGunnera symbiosis

    Rai, A NBergman, BRasmussen, U eds. Cyanobacteria in SymbiosisKluwer Academic PublishersDordrecht207232
    Google Scholar
  29. Bergman, B, Lindblad, P, Rai, A N 1986Nitrogenase in free-living and symbiotic cyanobacteria: Immunoelectron microscopic localizationFEMS Microbiol. Lett.357578CrossRefGoogle Scholar
  30. Bergman, B, Matveyev, A, Rasmussen, U 1996Chemical signalling in cyanobacterial–plant symbiosesTrends Plant Sci.1191197CrossRefGoogle Scholar
  31. Bergman B, Rasmussen U and Rai A N 2004 Cyanobacterial associations. In Associative Nitrogen-fixing Bacteria and Cyanobacterial Associations. Eds. C Elmerich and W E Newton. 41 pp. Kluwer Academic PublishersGoogle Scholar
  32. Berry, A M, Harriott, O T, Moreau, R A, Osman, S F, Benson, D R, Jones, A D 1993Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenaseProc. Natl. Acad. Sci., USA9060916094PubMedGoogle Scholar
  33. Berry A M, Murphy T M, Okubara P A, Jacobsen K R, Swensen S M and Pawlowski K 2004 Novel expression pattern of cytosolic glutamine synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata. Plant Physiol. (in review)Google Scholar
  34. Berry, A M, Torrey, J G 1983Root hair deformation in the infection process of Alnus rubra [Actinomycete Frankia]Can. J. Bot.6128632876CrossRefGoogle Scholar
  35. Bogusz, D, Llewellyn, D J, Craig, S, Dennis, E S, Appleby, C A, Peacock, W J 1988Nonlegume hemoglobin genes retain organ-specific expression in heterologous transgenic plantsPlant Cell2633641Google Scholar
  36. Bond, G 1952Some features of the root growth in nodulated plants of Myrica gale LAnn. Bot.16467475Google Scholar
  37. Brenner, E D, Stevenson, D W, Twigg, R W 2003Cycads: Evolutionary innovations and the role of plant-derived neurotoxinsTrends Plant Sci.8446452PubMedCrossRefGoogle Scholar
  38. Bromfield, E S P, Butler, G, Barran, L R 2001Temporal effects on the composition of a population of Sinorhizobium meliloti associated with Medicago sativa and Melilotus albaCan. J. Microbiol.47567573PubMedCrossRefGoogle Scholar
  39. Brown, P H, Hu, H 1996Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich speciesAnn. Bot.77497505Google Scholar
  40. Buikema, W J, Haselkorn, R 1993Molecular genetics of cyanobacterial developmentAnnu. Rev. Plant Physiol. Plant Mol. Biol.443352CrossRefGoogle Scholar
  41. Burgess, D, Peterson, R L 1987Development of Alnus japonica root nodules after inoculation with Frankia strain HFPArI3Can. J. Bot.6516471657Google Scholar
  42. Burris, R H 1991NitrogenasesJ. Biol. Chem.26693399342PubMedGoogle Scholar
  43. Callaham, D, Newcomb, W, Torrey, J G, Peterson, R L 1979Root hair infection in actinomycete-induced root nodule initiation in Casuarina cunninghamiana Myrica gale, Myrica cerifera and Comptonia peregrinaBot. Gaz.140S1S9CrossRefGoogle Scholar
  44. Callaham, D, Torrey, J G 1977Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae)Can. J. Bot.5523062318Google Scholar
  45. Cérémonie, H, Debelle, F, Fernandez, M P 1999Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factorCan. J. Bot.7712931301Google Scholar
  46. Chaudhuri, H, Akhtar, A R 1931The coral-like roots of Cycas revoluta, Cycas circinalis and Zamia floridana and the alga inhabiting themJ. Ind. Bot. Soc.104359Google Scholar
  47. Colebatch, G, Kloska, S, Trevaskis, B, Freund, S, Altmann, T, Udvardi, M K 2002aNovel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arraysMol. Plant-Microbe Interact.15411420Google Scholar
  48. Colebatch, G, Trevaskis, B, Udvardi, M 2002bSymbiotic nitrogen fixation research in the postgenomics eraNew Phytol.1533742Google Scholar
  49. Costa, J-L, Lindblad, P 2002

    Cyanobacteria in symbiosis with cycads

    Rai, A NBergman, BRasmussen, U eds. Cyanobacteria in SymbiosisKluwer Academic PublishersDordrecht195202
    Google Scholar
  50. Christensen, T, Dennis, E S, Peacock, J W, Landsmann, J, Marcker, K A 1991Hemoglobin genes in non-legumes: Cloning and characterization of a Casuarina glauca hemoglobin genePlant Mol. Biol.16339344PubMedCrossRefGoogle Scholar
  51. Clawson, M L, Benson, D R 1999Natural diversity of Frankia strains in actinorhizal root nodules from promiscuous hosts in the family MyricaceaeAppl. Environ. Microbiol.6545214527PubMedGoogle Scholar
  52. Cohen, M F, Meeks, J C 1997A hormogonium regulating locus, hrmUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatusMol. Plant-Microbe Interact.10280289PubMedGoogle Scholar
  53. Cullimore, J V, Bennett, M J 1992Nitrogen assimilation in the legume root nodule: Current status of the molecular biology of the plant enzymesCan. J. Microbiol.38461466Google Scholar
  54. Cvitanich, C, Pallisgaard, N, Nielsen, K A, Hansen, A C, Larsen, K, Pihakaski-Maunsbach, K, Marcker, K A, Jensen, E O 2000CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 geneProc. Natl. Acad. Sci., USA9781638168PubMedCrossRefGoogle Scholar
  55. Day, D A, Poole, P S, Tyerman, S D, Rosendahl, L 2001Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodulesCell. Mol. Life Sci.586171PubMedGoogle Scholar
  56. Day, A A, Udvardi, M K 1993Metabolite exchange across symbiosome membranesSymbiosis14175189Google Scholar
  57. Denison, R F 1992Mathematical modeling of oxygen diffusion and respiration in legume root nodulesPlant Physiol.98901907PubMedGoogle Scholar
  58. Denison, R F 2000Legume sanctions and the evolution of symbiotic cooperation by rhizobiaAm. Nat.156567576CrossRefGoogle Scholar
  59. Denison, R F, Okano, Y 2003Leghaemoglobin oxygenation gradients in alfalfa and yellow sweetclover nodulesJ. Exp. Bot.5410851091PubMedCrossRefGoogle Scholar
  60. Diem, H G, Dommergues, Y R 1990

    Current and potential uses and management of Casuarinaceae in the tropics and subtropics

    Schwintzer, C RTjepkema, J D eds. The Biology of Frankia and Actinorhizal PlantsAcademic PressNew York317342
    Google Scholar
  61. Dommergues, Y R 1995Nitrogen fixation by trees in relation to soil nitrogen economyFertil. Res.42215230CrossRefGoogle Scholar
  62. Doyle, J J 1998Phylogenetic perspectives on nodulation: Evolving views of plants and symbiotic bacteriaTrends Plant Sci.3473478CrossRefGoogle Scholar
  63. Franche, C, Laplaze, L, Duhoux, E, Bogusz, D 1998Actinorhizal symbioses: Recent advances in plant molecular and genetic transformation studiesCrit. Rev. Plant Sci.17128Google Scholar
  64. Galibert, F, Finan, T M, Long, S R, Puhler, A, Abola, P, Ampe, F, Barloy-Hubler, F, Barnett, M J, Becker, A, Boistard, P, Bothe, G, Boutry, M, Bowser, L, Buhrmester, J, Cadieu, E, Capela, D, Chain, P, Cowie, A, Davis, R W, Dreano, S, Federspiel, N A, Fisher, R F, Gloux, S, Godrie, T, Goffeau, A, Golding, B, Gouzy, J, Gurjal, M, Hernandez-Lucas, I, Hong, A, Huizar, L, Hyman, R W, Jones, T, Kahn, D, Kahn, M L, Kalman, S, Keating, D H, Kiss, E, Komp, C, Lalaure, V, Masuy, D, Palm, C, Peck, M C, Pohl, T M, Portetelle, D, Purnelle, B, Ramsperger, U, Surzycki, R, Thebault, P, Vandenbol, M, Vorholter, F J, Weidner, S, Wells, D H, Wong, K, Yeh, K C, Batut, J 2001The composite genome of the legume symbiont Sinorhizobium melilotiScience293668672PubMedGoogle Scholar
  65. Gallon, J R 1992Tansley Review No. 44: Reconciling the incompatible N2 fixation and O2New Phytol.122571609Google Scholar
  66. Gallon, J R 2001N2 fixation in phototrophs: Adaptation to a specialized way of lifePlant Soil2303948CrossRefGoogle Scholar
  67. Gantar, M, Elhai, J 1999Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9BNew Phytol.141373379CrossRefGoogle Scholar
  68. Gauthier, D, Jaffre, T, Prin, Y 2000Abundance of Frankia from Gymnostoma spp. in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemic to New CaledoniaEur. J. Soil Biol.36169175CrossRefGoogle Scholar
  69. Gherbi, H, Duhoux, E, Franche, C, Pawlowski, K, Berry, A M, Bogusz, D 1997Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodulePhysiol. Plant99608616CrossRefGoogle Scholar
  70. Grobbelaar, N, Hattingh, W, Marshall, J 1986The occurrence of coralloid roots on the South African species of the Cycadales and their ability to fix nitrogen symbioticallyS.␣Afr. J. Bot.52467471Google Scholar
  71. Grobbelaar, N, Scott, W E, Hattingh, W, Marshall, J 1987The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogenS. Afr. J. Bot.53111118Google Scholar
  72. Grove, T S, O’Connell, A M, Malajczuk, N 1980Effects of fire on the growth, nutrient content and rate of nitrogen fixation on the cycad Macrozamia riedleiAust. J. Bot.28271281CrossRefGoogle Scholar
  73. Gualtieri, G, Bisseling, T 2000The evolution of nodulationPlant Mol. Biol.42181194PubMedCrossRefGoogle Scholar
  74. Guan, C H, Ribeiro, A, Akkermans, A D L, Jing, Y X, Kammen, A, Bisseling, T, Pawlowski, K 1996Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: Expression of glutamine synthetase and acetylornithine transaminasePlant Mol. Biol.3211771184PubMedCrossRefGoogle Scholar
  75. Guinel, F C, Geil, R D 2002A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legume and its use to understand the roles of ethylene in the establishment of these two symbiosesCan. J. Bot.80695720CrossRefGoogle Scholar
  76. Hafeez, F, Akkermans, A D L, Chaudhary, A H 1984Observations on the ultrastructure of Frankia sp. in root nodules of Datisca cannabina LPlant Soil79383402CrossRefGoogle Scholar
  77. Halliday, J, Pate, J S 1976Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia riedlei: Physiological characteristics and ecological significanceAust. J. Plant Physiol.3349358CrossRefGoogle Scholar
  78. Haselkorn, R, Schlictman, D, Jones, K, Buikema, W J 1997

    Heterocyst differentiation and nitrogen fixation in cyanobacteria

    Elmerich, CKondorosi, ANewton, W E eds. Biological Nitrogen Fixation for the 21st CenturyKluwerDordrecht9396
    Google Scholar
  79. Heidstra, R, Nilsen, G, Martinez-Abarca, F, Kammen, A, Bisseling, T 1997Nod factor-induced expression of leghemoglobin to study the mechanism of NH4NO3 inhibition on root hair deformationMol. Plant-Microbe Interact.10215220PubMedGoogle Scholar
  80. Hirsch, A M, Fang, Y, Asad, S, Kapulnik, Y 1997The role of phytohormones in plant–microbe symbiosesPlant Soil194171184CrossRefGoogle Scholar
  81. Hughes, M, Donnelly, C, Crozier, A, Wheeler, C T 1999Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulationCan. J. Bot.7713111315CrossRefGoogle Scholar
  82. Hunt, S, Layzell, D B 1993Gas exchange of legume nodules and the regulation of nitrogenase activityAnnu. Rev. Plant Physiol. Plant Mol. Biol.44483511CrossRefGoogle Scholar
  83. Hunt, P W, Klok, E J, Trevaskis, B, Watts, R A, Ellis, M H, Peacock, W J, Dennis, E S 2002Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thalianaProc. Natl. Acad. Sci., USA991719717202PubMedGoogle Scholar
  84. Hunt, P W, Watts, R A, Trevaskis, B, Llewelyn, D J, Burnell, J, Dennis, E S, Peacock, W J 2001Expression and evolution of functionally distinct haemoglobin genes in plantsPlant Mol. Biol.47677692PubMedCrossRefGoogle Scholar
  85. Huss-Danell, K 1990

    The physiology of actinorhizal nodules

    Schwintzer, C RTjepkema, J D eds. The Biology of Frankia and Actinorhizal PlantsAcademic PressNew York129156
    Google Scholar
  86. Huss-Danell, K 1997Tansley Review No. 93. Actinorhizal symbioses and their N2 fixationNew Phytol.136375405CrossRefGoogle Scholar
  87. Huss-Danell, K, Bergman, B 1990Nitrogenase in Frankia from root nodules of Alnus incana (L.) Moench: Immunolocalization of the Fe- and MoFe-proteins during vesicle differentiationNew Phytol.116443455Google Scholar
  88. Jacobson-Lyon, K, Jensen, E O, Jorgensen, J E, Marcker, K A, Peacock, W J, Dennis, E S 1995Symbiotic and nonsymbiotic hemoglobulin genes of Casuarina glaucaPlant Cell7213223Google Scholar
  89. James, E K, Iannetta, P P M, Naisbitt, T, Goi, S R, Sutherland, J M, Sprent, J I, Minchin, F R, Brewin, N J 1994A survey of N2-fixing nodules in the Leguminosae with particular reference to intercellular glycoprotein in the control of oxygen diffusionProc. Roy. Soc. Edinburgh102B429432Google Scholar
  90. James, E K, Iannetta, P P M, Deeks, L, Sprent, J I, Minchin, F R 2000Detopping causes production of intercellular space occlusions in both the cortex and infected region of soybean nodulesPlant Cell Environ.23377386CrossRefGoogle Scholar
  91. Johansson, C, Bergman, B 1992Early events during the establishment of the Gunnera/Nostoc symbiosisPlanta188403413CrossRefGoogle Scholar
  92. John, T R, Wiggington, J, Bock, J V, Klemt, R, Johnson, J D 2003An insertion sequence unique to Frankia strain ArI5Plant Soil254107113CrossRefGoogle Scholar
  93. Kaneko, T, Nakamura, Y, Sato, S, Asamizu, E, Kato, T, Sasamoto, S, Watanabe, A, Idesawa, K, Ishikawa, A, Kawashima, K, Kimura, T, Kishida, Y, Kiyokawa, C, Kohara, M, Matsumoto, M, Matsuno, A, Mochizuki, Y, Nakayama, S, Nakazaki, N, Shimpo, S, Sugimoto, M, Takeuchi, C, Yamada, M, Tabata, S 2000Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium lotiDNA Res.7331338PubMedGoogle Scholar
  94. Kaneko, T, Nakamura, Y, Sato, S, Minamisawa, K, Uchiumi, T, Sasamoto, S, Watanabe, A, Idesawa, K, Iriguchi, M, Kawashima, K, Kohara, M, Matsumoto, M, Shimpo, S, Tsuruoka, H, Wada, T, Yamada, M, Tabata, S 2002Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110DNA Res.9189197PubMedGoogle Scholar
  95. Kapranov, P, Routt, S M, Bankaitis, V A, Bruijn, F J, Szczyglowski, K 2001Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicusPlant Cell1313691382PubMedCrossRefGoogle Scholar
  96. Karr, D B, Oehrle, N W, Emerich, D W 2003Recovery of nitrogenase from aerobically isolated soybean nodule bacteroidsPlant Soil2572733CrossRefGoogle Scholar
  97. Kelner, D J, Vessey, J K, Entz, M H 1997The nitrogen dynamics of one, two and three year stands of alfalfa in a cropping systemAgric. Ecosyst. Environ.64110Google Scholar
  98. Klint J, Ran R, Rasmussen, U and Bergman B 2003 Proteomics of the symbiotic cyanobacterium Nostoc punctiforme: Identification of developmentally regulated proteins in hormogonia. Mol. Plant-Microbe Interact., submitted for publicationGoogle Scholar
  99. Knight, C D, Adams, D G 1996A method for studying chemotaxis in nitrogen-fixing cyano-bacterium–plant symbiosesPhysiol. Mol. Plant Pathol.497377CrossRefGoogle Scholar
  100. Knowlton, S, Berry, A, Torrey, J G 1980Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by FrankiaCan. J. Microbiol.26971977PubMedGoogle Scholar
  101. Kuzma, M M, Layzell, D B 1994Acclimation of soybean nodules to changes in temperaturePlant Physiol.106263270PubMedGoogle Scholar
  102. Lancelle, S A, Torrey, J G 1984Early development of Rhizobium-induced root nodules of Parasponia rigida. I. Infection and early nodule initiationProtoplasma1232637CrossRefGoogle Scholar
  103. Lancelle, S A, Torrey, J G 1985Early development of Rhizobium-induced root nodules of Parasponia rigida. II. Nodule morphogenesis and symbiotic developmentCan. J. Bot.632535Google Scholar
  104. Lavire, C, Cournoyer, B 2003Progress on the genetics of the N2-fixing actinorhizal symbiont FrankiaPlant Soil254125137CrossRefGoogle Scholar
  105. Lavire, C, Louis, D, Perriere, G, Briolay, J, Normand, P, Cournoyer, B 2001Analysis of pFQ31, a 8551-bp cryptic plasmid from the symbiotic nitrogen-fixing actinomycete FrankiaFEMS Microbiol. Lett.197111116PubMedGoogle Scholar
  106. Layzell, D B 1990

    N2 fixation, NO3 reduction and NH4+ assimilation

    Dennis, D TTurpin, D H eds. Plant Physiology, Biochemistry and Molecular BiologyLongman GroupEssex389406
    Google Scholar
  107. Lee, H, Sung, S B, Kim, H B, An, C S 2001Sequence analysis and expression patterns of two nifA genes from Frankia EuIK1Austral. J. Plant Physiol.28939949Google Scholar
  108. Lhuissier, F G P, Ruijter, N C A, Sieberer, BJ, Esseling, J J, Emons, A M C 2001Time course of cell biological events evoked in legume root hairs by Rhizobium Nod factors: State of the artAnn. Bot.87289302CrossRefGoogle Scholar
  109. Li, Y Z, Parsons, R, Day, D A, Bergersen, F J 2002Reassessment of major products of N2 fixation by bacteroids from soybean root nodulesMicrobiology-SGM14819591966Google Scholar
  110. Lindblad, P 1992Ornithine cycle in Nostoc PCC 73102. Occurrence and localization of ornithine carbamoyl transferase and the effect of external carbon and ornithine on nitrogenase activity and citrulline synthesisProtoplasma1528795Google Scholar
  111. Lindblad, P, Atkins, C A, Pate, J S 1991N2 fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia riedlei (Fisch. ex Gaud.) GardnPlant Physiol.95753759PubMedGoogle Scholar
  112. Lindblad, P, Bergman, B 1986Glutamine synthetases: Activity and localization in cyanobacteria of the cycads Cycas revoluta and Zamia skinneriPlanta16917CrossRefGoogle Scholar
  113. Lindblad, P, Bergman, B 1990

    The cycad–cyanobacterial symbiosis

    Rai, A N eds. Handbook of Symbiotic CyanobacteriaCRC PressBoca Raton137159
    Google Scholar
  114. Lindbald, P, Bergman, B, Hofsten, A, Hällblom, L, Nylund, J-E 1985aThe cyanobacterium–Zamia symbiosis: An ultrastructural studyNew Phytol.101707716Google Scholar
  115. Lindblad, P, Hällblom, L, Lindblad, P 1985bThe cyanobacterium–Zamia symbiosis: C2H2 reduction and heterocyst frequencySymbiosis11928Google Scholar
  116. Liu, Q, Berry, A M 1991The infection process and nodule initiation in the FrankiaCeanothus root nodule symbiosis: A structural and histochemical studyProtoplasma1638292Google Scholar
  117. Lodwig, E, Poole, P 2003Metabolism of Rhizobium bacteroidsCrit. Rev. Plant Sci.223778Google Scholar
  118. Lopez, M F, Fontaine, M S, Torrey, J G 1984Levels of trehalose and glycogen in Frankia sp. HFPArI3 (Actinomycetales) [Nitrogen-fixing bacteria]Can. J. Microbiol.30746752Google Scholar
  119. Lopez, M F, Young, P, Torrey, J G 1986A comparison of carbon source utilization for growth and nitrogenase activity in two Frankia isolatesCan. J. Microbiol.32353358Google Scholar
  120. Madsen, E B, Madsen, L H, Radutoiu, S, Olbryt, M, Rakwalska, M, Szczyglowski, K, Sato, S, Kaneko, T, Tabata, S, Sandal, N, Stougaard, J 2003A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signalsNature425637640PubMedCrossRefGoogle Scholar
  121. Marie, C, Deakin, W J, Viprey, V, Kopcinska, J, Golinowski, W, Krishnan, H B, Perret, X, Broughton, W J 2003Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234Mol. Plant-Microbe Interact.16743751PubMedGoogle Scholar
  122. Mariotti, A, Sougoufara, B, Dommergues, Y R 1992Estimation of nitrogen fixation using the natural abundance method in a plantation of Casuarina equisetifolia (Forst)Soil Biol. Biochem.24647653CrossRefGoogle Scholar
  123. Martel, A, Jansson, E, Garcia-Reina, G, Lindblad, P 1993Ornithine cycle in Nostoc 73102. Arginase, OCT and arginine deaminase, and the effects of addition of external sarginine, ornithine and citrullineArch. Microbiol.59506511Google Scholar
  124. Martinez-Romero, E 2003Diversity of RhizobiumPhaseolus vulgaris symbiosis: Overview and perspectivesPlant Soil2521123Google Scholar
  125. Marvel, D J, Torrey, J G, Ausubel, F M 1987Rhizobium symbiotic genes required for nodulation of legume and nonlegume hostsProc. Natl. Acad. Sci., USA8413191323PubMedGoogle Scholar
  126. Mattsson, U, Johansson, L, Sandström, G, Sellstedt, A 2001Frankia KB5 possesses a hydrogenase immunologically related to membrane-bound [NiFe]-hydrogenasesCurr. Microbiol.42438441PubMedCrossRefGoogle Scholar
  127. Mattsson, U, Sellstedt, A 2002Nickel affects activity more than expression of hydrogenase protein in FrankiaCurr. Microbiol.448893PubMedCrossRefGoogle Scholar
  128. McClure, P R, Coker, G T,III, Schubert, K R 1983Carbon dioxide fixation in roots and nodules of Alnus glutinosaPlant Physiol.71652657PubMedGoogle Scholar
  129. McEwan, N R, Green, D C, Wheeler, C T 1992Utilisation of the root hair curling reaction in Alnus glutinosa for the assay of nodulation signal compoundsActa Oecol.13509510Google Scholar
  130. Meeks, J C, Campbell, E, Hagen, K, Hanson, T, Hitzeman, N, Wong, F 1999

    Developmental alternatives of symbiotic Nostoc punctiforme in response to its symbiotic partner Anthoceros punctatus

    Peschek, G ALöffelhardt, WSchmetterer, G eds. The Phototrophic ProkaryotesKluwer Academic PublisherNew York665678
    Google Scholar
  131. Meesters, T M 1987Localization of nitrogenase in vesicles of Frankia sp. Cc1.17 by immunogoldlabelling on ultrathin cryosectionsArch. Microbiol.146327331CrossRefGoogle Scholar
  132. Miklashevichs, E, Rohrig, H, Schell, J, Schmidt, J 2001Perception and signal transduction of rhizobial NOD factorsCrit. Rev. Plant Sci.20373394Google Scholar
  133. Miller, I M, Baker, D D 1985The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae)Protoplasma128107119CrossRefGoogle Scholar
  134. Miller, I M, Baker, D D 1986Nodulation of actinorhizal plants by Frankia strains capable of both root hair infection and intercellular penetrationProtoplasma1318291CrossRefGoogle Scholar
  135. Mohapatra, S S, Gresshoff, P M 1984Carbon–nitrogen requirements for the expression of nitrogenase activity in cultured ParasponiaRhizobium strain ANU 289 [Nitrogen-fixing bacteria]Arch. Microbiol.1375862CrossRefGoogle Scholar
  136. Newcomb, W, Pankhurst, C E 1982Fine structure of actinorhizal nodules of Coriaria arborea (Coriariaceae)N.␣Z. J. Bot.2093103Google Scholar
  137. Nilsson, M, Bhattacharya, J, Rai, A N, Bergman, B 2002Colonization of roots of rice (Oryza sativa) by symbiotic Nostoc strainsNew Phytol.156517525CrossRefGoogle Scholar
  138. Obukowicz, M, Schaller, M, Kennedy, G S 1981Ultrastructure and phenolic histochemistry of the Cycas revolutaAnabaena symbiosisNew Phytol.87751759Google Scholar
  139. Oh, C J, Kim, H B, An, C S 2003Molecular cloning and complementation analysis of nifV gene from Frankia EuIK1 strainMol. Cells152733PubMedGoogle Scholar
  140. Oke, V, Long, S R 1999Bacteroid formation in the Rhizobium–legume symbiosisCurr. Opin. Microbiol.2641646PubMedCrossRefGoogle Scholar
  141. Okubara, P A, Fujishige, N A, Hirsch, A M, Berry, A M 2000Dg93, a nodule-abundant mRNA of Datisca glomerata with homology to a soybean early nodulinPlant Physiol.12210731079PubMedCrossRefGoogle Scholar
  142. Ow, M C, Gantar, M, Elhai, J 1999Reconstitution of a cycad–cyanobacterial associationSymbiosis27125134Google Scholar
  143. Pandya, S, Iyer, P, Gaitonde, V, Parekh, T, Desai, A 1999Chemotaxis of rhizobium SP.S2 towards Cajanus cajan root exudate and its major componentsCurr. Microbiol.38205209PubMedGoogle Scholar
  144. Parker, M A, Lafay, B, Burdon, J J, Berkum, P 2002Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in BradyrhizobiumMicrobiology-SGM14825572565Google Scholar
  145. Parsons, R, Silvester, W B, Harris, S, Gruijters, W T M, Bullivant, S 1987Frankia vesicles provide inducible and absolute oxygen protection for nitrogenasePlant Physiol.83728731PubMedGoogle Scholar
  146. Parsons, R, Sunley, R J 2001Nitrogen nutrition and the role of root–shoot nitrogen signalling particularly in symbiotic systemsJ. Exp. Bot.52435443PubMedGoogle Scholar
  147. Pate, J S, Lindblad, P, Atkins, C A 1988Pathways of assimilation and transfer of the fixed nitrogen in coralloid roots of cycad–Nostoc symbiosesPlanta176461471CrossRefGoogle Scholar
  148. Pate, J S 1989Synthesis, transport, and utilization of products of symbiotic nitrogen fixationRec. Adv. Phytochem.2365115Google Scholar
  149. Pathirana, S M, Tjepkema, J D 1995Purification of hemoglobin from the actinorhizal root nodules of Myrica gale LPlant Physiol.107827831PubMedGoogle Scholar
  150. Pawlowski, K, Swensen, S, Guan, C H, Hadri, A E, Berry, A M, Bisseling, T 2003Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant familiesMol. Plant-Microbe Interact.16796807PubMedGoogle Scholar
  151. Pawlowski, K, Twigg, P, Dobritsa, S, Guan, C, Mullin, B C 1997A nodule-specific gene family from Alnus glutinosa encodes glycine- and histidine-rich proteins expressed in the early stages of actinorhizal nodule developmentMol. Plant-Microbe Interact.10656664PubMedGoogle Scholar
  152. Peoples, M B, Giller, K E, Herridge, D F, Vessey, J K 2002

    Limitations to biological nitrogen fixation as a renewable source of nitrogen for agriculture

    Finan, T MO’Brian, M RLayzell, D BVessey, J KNewton, W eds. Nitrogen Fixation – Global PerspectivesCABI PublishingNew York356360
    Google Scholar
  153. Phillips, D A, Wery, J, Joseph, C M, Jones, A D, Teuber, L R 1995Release of flavonoids and betaines from seeds of seven Medicago speciesCrop Sci.35805808CrossRefGoogle Scholar
  154. Plazinski, J, Croft, L, Taylor, R, Zheng, Q, Rolfe, B G, Gunning, B E S 1991Indigenous plasmids in Anabaena azollae: Their taxonomic distribution and existence of regions of homology of symbiotic genes of RhizobiumCan. J. Microbiol.37171181Google Scholar
  155. Poza-Carrion, C, Fernandez-Valiente, E, Pinas, F F, Leganes, F 2001Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp strain UAM 206 to combined fluctuations of irradiance, pH, and inorganic carbon availabilityJ. Plant Physiol.15814551461Google Scholar
  156. Price, G D, Mohapatra, S S, Gresshoff, P M 1984Structure of nodules formed by Rhizobium strain ANU289 in the nonlegume Parasponia and the legume Siratro (Macroptilium atropurpureum)Bot. Gaz.145444451Google Scholar
  157. Price, N P J 1999Carbohydrate determinants of Rhizobium–legume symbiosesCarbohydr. Res.31719PubMedCrossRefGoogle Scholar
  158. Qian, J H, Kwon, S W, Parker, M A 2003rRNA, nifD phylogeny of Bradyrhizobium from sites across the Pacific BasinFEMS Microbiol. Lett.219159165PubMedCrossRefGoogle Scholar
  159. Racette, S, Torrey, J G 1989Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1Can. J. Bot.6728732879Google Scholar
  160. Radutoiu, S, Madsen, L H, Madsen, E B, Felle, H H, Umehara, Y, Gronlund, M, Sato, S, Nakamura, Y, Tabata, S, Sandal, N, Stougaard, J 2003Plant recognition of symbiotic bacteria requires two LysM receptor-like kinasesNature425585592PubMedCrossRefGoogle Scholar
  161. Rai, A N, Bergman, B, Rasmussen, U 2002Cyanobacteria in SymbiosisKluwer AcademicDordrecht368Google Scholar
  162. Rai, A N, Söderbäck, E, Bergman, B 2000Tansley Review No. 116: Cyanobacterium–plant symbiosesNew Phytol.147449481CrossRefGoogle Scholar
  163. Ramirez-Saad, H, Janse, J D, Akkermans, A D L 1998Root nodules of Ceanothus caeruleus contain both the N2-fixing Frankia endophyte and a phylogenetically related Nod-/Fix-actinomyceteCan. J. Microbiol.44140148Google Scholar
  164. Rasmussen, U, Johansson, C, Renglin, A, Pettersson, C, Bergman, B 1996A molecular characterization of the GunneraNostoc symbiosis: Comparison with Rhizobium- and Agrobacterium-plant interactionsNew Phytol.133391398Google Scholar
  165. Rasmussen, U, Nilsson, M 2002

    Cyanobacterial diversity and specificity in plant symbioses

    Rai, A NBergman, BRasmussen, U eds. Cyanobacteria in SymbiosisKluwer Academic PublishersDordrecht313328
    Google Scholar
  166. Reinhold-Hurek, B, Hurek, T 1997

    Interaction between diazotrophs and grasses

    Legocki, ABothe, HPuhler, A eds. Biological Fixation of Nitrogen for Ecology and Sustainable AgricultureSpringer-VerlagBerlin317324
    Google Scholar
  167. Ribbe, M, Gadkari, D, Meyer, O 1997N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenaseJ. Biol. Chem.2722662726633PubMedCrossRefGoogle Scholar
  168. Rippka, R, Deruelles, J, Waterbury, J B, Herdman, M, Stainer, R Y 1979Generic assignments, strain histories and properties of pure cultures of cyanobacteriaJ. Gen. Microbiol.111161Google Scholar
  169. Robinson, J B, Bauer, W D 1993Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium melilotiJ. Bacteriol.17522842291PubMedGoogle Scholar
  170. Rodriguez-Barrueco, C, Castro, F B 1973Cytokinin-induced pseudonodules on Alnus glutinosaPhysiol. Plant.29227280Google Scholar
  171. Roelofsen, W, Akkermann, A D L 1979Uptake and evolution of H2 and reduction of C2H2 by root nodules and homogenates of Alnus glutinosa LPlant Soil110167176Google Scholar
  172. Santi, C, Svistoonoff, S, Constans, L, Auguy, F, Duhoux, E, Bogusz, D, Franche, C 2003aChoosing a reporter for gene expression studies in transgenic actinorhizal plants of the Casuarinaceae familyPlant Soil254229237CrossRefGoogle Scholar
  173. Santi, C, Groll, U, Ribeiro, A, Chiurazzi, M, Auguy, F, Bogusz, D, Franche, C, Pawlowski, K 2003bComparison of nodule induction in legume and actinorhizal symbioses: The induction of actinorhizal nodules does not involve ENOD40Mol. Plant-Microbe Interact.16808816Google Scholar
  174. Schneider, D, Wink, M, Sporer, F, Lounibos, P 2002Cycads: Their evolution, toxins, herbivores and insect pollinatorsNaturwissenschaften89281294PubMedCrossRefGoogle Scholar
  175. Schopf, J W, Kudryavtsev, A B, Agresti, D G, Wdowlak, T J, Czaja, A D 2002Laser-Raman imagery of Earth’s earliest fossilsNature4167376PubMedCrossRefGoogle Scholar
  176. Schubert, K R 1986Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolismAnnu. Rev. Plant Physiol.37539574CrossRefGoogle Scholar
  177. Schultze, M, Kondorosi, A 1998Regulation of symbiotic root nodule developmentAnnu. Rev. Genet.323357PubMedCrossRefGoogle Scholar
  178. Schwencke, J, Caru, M 2001Advances in actinorhizal symbiosis: Host plant–Frankia interactions, biology, and applications in arid land reclamation. A reviewArid Land Res. Man.15285327Google Scholar
  179. Schwintzer, C R, Berry, A M, Disney, L D 1982Seasonal patterns of root nodule growth, endophyte morphology, nitrogenase activity and shoot development in Myrica galeCan. J. Bot.60746757Google Scholar
  180. Scott, K F, Saad, M, Price, G D, Gresshoff, P M, Kane, H, Chua, K Y 1987

    Conserved nodulation genes are obligatory for nonlegume nodulation

    Verma, D-P SBrisson, N eds. Molecular Genetics and Plant–Microbe InteractionsKluwer Academic PublishersDordrecht
    Google Scholar
  181. Sellstedt, A, Atkins, C A 1991Composition of amino compounds transported in xylem of Casuarina spJ. Exp. Bot.4214931497Google Scholar
  182. Sergeeva, E, Liaimer, A, Bergman, B 2002Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteriaPlanta215229238PubMedCrossRefGoogle Scholar
  183. Serraj, R, Sinclair, T R, Purcell, L C 1999Symbiotic N2 fixation response to droughtJ. Exp. Bot.50143155CrossRefGoogle Scholar
  184. Silvente, S, Camas, A, Lara, M 2003Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): Evidence for a nodule-enhanced sucrose synthase geneJ. Exp. Bot.54749755PubMedGoogle Scholar
  185. Silvester, W B, Harris, S L 1989Nodule structure and nitrogenase activity of Coriaria arborea in response to varying oxygen partial pressurePlant Soil11897110CrossRefGoogle Scholar
  186. Silvester, W B, Harris, S L, Tjepkema, J D 1990

    Oxygen regulation and hemoglobin

    Schwintzer, C RTjepkema, J D eds. The Biology of Frankia and Actinorhizal PlantsAcademic PressNew York157176
    Google Scholar
  187. Silvester, W B, Langenstein, B, Berg, R H 1999Do mitochondria provide the oxygen diffusion barrier in root nodules of Coriaria and Datisca?Can. J. Bot.7713581366CrossRefGoogle Scholar
  188. Silvester, W B, Parsons, R, Watt, P W 1996Direct measurement of release and assimilation of ammonia in the GunneraNostoc symbiosisNew Phytol.132617625Google Scholar
  189. Silvester, W B, Whitbeck, J, Silvester, J K, Torrey, J G 1988Growth, nodule morphology, and nitrogenase activity of Myrica gale with roots grown at various oxygen levelsCan. J. Bot.6617621771Google Scholar
  190. Simms, E L, Taylor, D L 2002Partner choice in nitrogen-fixation mutualisms of legumes and rhizobiaIntegrat. Comp. Biol.42369380Google Scholar
  191. Smith, C A, Skvirsky, R C, Hirsch, A M 1986Histochemical evidence for the presence of a suberinlike compound in Rhizobium-induced nodules of the nonlegume Parasponia rigidaCan. J. Bot.6414741483Google Scholar
  192. Soedarjo, M, Borthakur, D 1998Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strainsSoil Biol. Biochem.3016051613CrossRefGoogle Scholar
  193. Soltis, D E, Soltis, P S, Morgan, D R, Swensen, S M, Mullin, B C, Dowd, J M, Martin, P G 1995Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiospermsProc. Natl. Acad. Sci., USA9226472651PubMedGoogle Scholar
  194. Soltis, P S, Soltis, D E, Zanis, M J, Kim, S 2000Basal lineages of angiosperms: Relationships and implications for floral evolutionInt. J. Plant Sci.161S97S107CrossRefGoogle Scholar
  195. Smolander, A, Ronkko, R, Nurmiaho-Lassila, E L, Haahtela, K 1990Growth of Frankia in the rhizosphere of Betula pendula, a nonhost tree species CanCan. J. Microbiol.36649656Google Scholar
  196. Sprent, J I, Raven, J A 1992

    Evolution of nitrogen-fixing root nodules symbioses

    Stacey, GBurris, R HEvans, H J eds. Biological Nitrogen Fixation: Achievements and ObjectivesChapman & HallNew York461196
    Google Scholar
  197. Sprent, J I, Scott, R 1979

    The nitrogen economy of Myrica gale and its possible significance for the afforestation of peat soils

    Gordon, J CWheeler, C TPerry, A eds. Symbiotic Nitrogen Fixation in the Management of Temperate ForestsForest Research Laboratory, State UniversityCorvallis234242
    Google Scholar
  198. Stevens, G A,Jr, Berry, A M 1988Cytokinin secretion by Frankia sp. HFPArI3 in defined mediumPlant Physiol.871516PubMedGoogle Scholar
  199. Suganuma,  2003The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodulesMol. Gen. Genom.269312320Google Scholar
  200. Suominen, L, Roos, C, Lortet, G, Paulin, L, Lindstrom, K 2001Identification and structure of the Rhizobium galegae common nodulation genes: Evidence for horizontal gene transferMol. Biol. Evol.18907916PubMedGoogle Scholar
  201. Svistoonoff, S, Laplaze, L, Auguy, F, Santi, C, Fontanillas, E, Duhoux, E, Franche, C, Bogusz, D 2003Expression pattern of ara12*, an Arabidopsis homologue of the nodule-specific actinorhizal subtilases cg12/ag12Plant Soil254239244CrossRefGoogle Scholar
  202. Swensen, S M 1996The evolution of actinorhizal symbioses – evidence for multiple origins of the symbiotic associationAm. J. Bot.8315031512Google Scholar
  203. Szczyglowski, K, Kapranov, P, Hamburger, D, Bruijn, F J 1998The Lotus japonicus LjNOD70 nodulin gene encodes a protein with similarities to transportersPlant Mol. Biol.37651661PubMedCrossRefGoogle Scholar
  204. Tamagnini, P, Axelsson, R, Lindberg, P, Oxelfelt, F, Wunschiers, R, Lindblad, P 2002Hydrogenases and hydrogen metabolism of cyanobacteriaMicrobiol. Mol. Biol. Rev.66120PubMedGoogle Scholar
  205. Tjepkema, J D, Cartica, R J 1982Diffusion limitation of oxygen uptake and nitrogenase activity in the root nodules of Parasponia rigida Merr. and PerryPlant Physiol.69728733PubMedGoogle Scholar
  206. Torrey, J G, Callaham, D 1979Early nodule development in Myrica gale. Soil actinomycete causing nodulationBot. Gaz.140S10S14Google Scholar
  207. Treutlein, J, Wink, M 2002Molecular phylogeny of cycads inferred from rbcL sequencesNaturwissenschaften89221z225PubMedCrossRefGoogle Scholar
  208. Trevaskis, B, Colebatch, G, Desbrosses, G, Wandrey, M, Wienkoop, S, Saalbach, G, Udvardi, M 2002Differentiation of plant cells during symbiotic nitrogen fixationComp. Funct. Gen.3151157Google Scholar
  209. Trinick, M J 1973Symbiosis between Rhizobium and the non-legume, Trema asperaNature (Lond.)244459460CrossRefGoogle Scholar
  210. Trinick, M J 1979Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii PlanchCan. J. Microbiol.25565578PubMedGoogle Scholar
  211. Trinick, M J 1981

    The effective Rhizobium symbiosis with the non-legume Parasponia andersonii

    Gibson, A HNewton, W E eds. Current Perspectives in Nitrogen FixationElsevier/North-Holland Biomedical PressAmsterdam480
    Google Scholar
  212. Trinick, M J, Galbraith, J 1980The Rhizobium requirements of the non-legume Parasponia andersonii in relationship to the cross-inoculation group concept of legumes nitrogen fixationNew Phytol.861726Google Scholar
  213. Tyerman, S D, Whitehead, L F, Day, D A 1995A channel-like transporter for NH4+ on the symbiotic interface of N2-fixing plantsNature378629632CrossRefGoogle Scholar
  214. Udvardi, M K, Day, D A 1990Ammonia (14C-methylamine) transport across the bacteroid and peribacteroid membranes of soybean root nodulesPlant Physiol.947176CrossRefPubMedGoogle Scholar
  215. Udvardi, M K, Lister, D L, Day, D A 1992Isolation and characterization of a ntrC and mutant of Bradyrhizobium (Parasponia) sp. ANU289J. Gen. Microbiol.13810191025PubMedGoogle Scholar
  216. Valverde, C, Wall, L G 1999Time course of nodule development in the Discaria trinervis (Rhamnaceae)–Frankia symbiosisNew Phytol.141345354CrossRefGoogle Scholar
  217. Valverde, C, Wall, L G 2003Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C)Plant Soil254139153Google Scholar
  218. Ghelue, M, Løvaas, E, Ringø, E, Solheim, B 1997Early interactions between Alnus glutinosa (L.) Gaertn. and Frankia strain ArI3. Production and specificity of root hair deformation factor(s)Physiol. Plant.99579587Google Scholar
  219. Ghelue, M, Ribeiro, A, Solheim, B, Akkermans, A D L, Bisseling, T, Pawlowski, K 1996Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: Comparison with legume nodulesMol. Gen. Genet.250437446PubMedCrossRefGoogle Scholar
  220. Straten, J, Akkermans, A D L, Roelofsen, W 1977Nitrogenase activity of endophyte suspensions derived from root nodules of Alnus, Hippophae, Shepherdia and Myrica sppNature266257258Google Scholar
  221. Vessey, J K 2003Plant growth promoting rhizobacteria as biofertilizersPlant Soil255571586CrossRefGoogle Scholar
  222. Vessey, J K, Pan, B 2003Living a grounded life: Growth and nitrogenase activity of Gluconacetobacter diazotrophicus on solid media in response to culture conditionsSymbiosis35181197Google Scholar
  223. Vessey, J K, Walsh, K B, Layzell, D B 1988Oxygen limitation of N2 fixation in stem-girdled and nitrate-treated soybeanPhysiol. Plant.73113121Google Scholar
  224. Vikman, P-A 1992The symbiotic vesicle is a major site for respiration in Frankia from Alnus incana root nodulesCan. J. Microbiol.38779784CrossRefGoogle Scholar
  225. Vikman, P-A, Huss-Danell, K 1987aPurity of Frankia preparations from root nodules of Alnus incanaPhysiol. Plant.71489494Google Scholar
  226. Vikman, P-A, Huss-Danell, K 1987bCapacity for hexose respiration in symbiotic Frankia from Alnus incanaPhysiol. Plant.70349354Google Scholar
  227. Vikman, P-A, Huss-Danell, K 1991Respiration of malate and glutamate in symbiotic Frankia prepared from Alnus incanaJ. Exp. Bot.42221228Google Scholar
  228. Vikman, P-A, Vessey, J K 1993Ontogenetic changes in root nodule subpopulations of common bean (Phaeolus vulgaris L.). III. Nodule formation, growth and degradationJ. Exp. Bot.44579586Google Scholar
  229. Viterbo, A, Matveyev, A, Rasmussen, U, Bergman, B 1999Characterization of a nodM/glmS homologous gene in the symbiotic cyanobacterium Nostoc PCC 9229Symbiosis26237246Google Scholar
  230. Walsh, K B, Vessey, J K, Layzell, D B 1987Carbohydrate supply and N2 fixation in soybean. The effect of varied daylength and stem girdlingPlant Physiol.85137144PubMedGoogle Scholar
  231. Wang C M, Ekman M and Bergman B 2004 Expression of cyanobacterial genes and proteins involved in heterocyst differentiation and dinitrogen fixation along a plant symbiosis development profile Mol. Plant-Microbe Interact., in pressGoogle Scholar
  232. Waters, J K, Hughes, B L, Purcell, L C, Gerhardt, K O, Mawhinney, T P, Emerich, D W 1998Alanine, not␣ammonia, is excreted from N2-fixing soybean nodule␣bacteroidsProc. Natl. Acad. Sci., USA951203812042PubMedCrossRefGoogle Scholar
  233. Webster, G, Davey, M R, Cocking, E C 1995aParasponia with rhizobia: A neglected non-legume nitrogen-fixing symbiosisAgBiotech News Info.7119124Google Scholar
  234. Webster, G, Poulton, P R, Cocking, E C, Davey, M R 1995bThe nodulation of micro-propagated plants of Parasponia andersonii by tropical legume rhizobiaJ. Exp. Bot.4611311137Google Scholar
  235. Weisz, P R, Sinclair, T R 1987Regulation of soybean nitrogen fixation in response to rhizosphere oxygen. I. Role of nodule respirationPlant Physiol.84900905PubMedGoogle Scholar
  236. Wheeler, C T, Watts, S H, Hillman, J R 1983Changes in carbohydrates and nitrogenase compounds in the root nodules of Alnus glutinosa in relation to dormancyNew Phytol.95209218Google Scholar
  237. Wittmann, W, Bergersen, F J, Kennedy, G S 1965The coralloid roots of Macrozamiacommunis L. JohnsonAust. J. Biol. Sci.1811291134Google Scholar
  238. Wong, F C Y, Meeks, J C 1994Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiationMicrobiology-SGM148315323Google Scholar
  239. Wycoff, K L, Hunt, S, Gonzales, M B, VandenBosch, K A, Layzell, D B, Hirsch, A M 1998Effects of oxygen on nodule physiology and expression of nodulins in alfalfaPlant Physiol.117385395PubMedCrossRefGoogle Scholar
  240. Zehr, J P, Jenkins, B D, Short, S M, Steward, G F 2003Nitrogenase gene diversity and microbial community structure: A cross-system comparisonEnviron. Microbiol.5539554PubMedCrossRefGoogle Scholar
  241. Zeng, S, Tjepkema, J D 1994The wall of the infected cell may be the major diffusion barrier in nodules of Myrica gale LSoil Biol. Biochem.26633639CrossRefGoogle Scholar
  242. Zepp, K, Hahn, D, Zeyer, J 1997Evaluation of a 23S rRNA insertion as target for the analysis of uncultured Frankia populations in root nodules of alders by whole cell hybridizationSyst. Appl. Microbiol.20124132Google Scholar
  243. Zheng, W, Song, T, Bao, X, Bergman, B, Rasmussen, U 2002High cyanobacterial diversity in coralloid roots of cycads revealed by PCR fingerprintingFEMS Microbiol. Ecol.40215222PubMedGoogle Scholar
  244. Zhulin, I B, Bespalov, V A, Johnson, M S, Taylor, B L 1996Oxygen taxis and proton motive force in Azospirillum brasilenseJ. Bacteriol.17851995204PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. Kevin Vessey
    • 1
  • Katharina Pawlowski
    • 2
  • Birgitta Bergman
    • 3
  1. 1.Department of BiologySaint Mary’s University, HalifaxCanada
  2. 2.Plant Biochemistry, Albrecht von Haller Institute for Plant SciencesGöttingen UniversityGöttingenGermany
  3. 3.Department of BotanyStockholm UniversitySweden

Personalised recommendations