Plant and Soil

, Volume 282, Issue 1–2, pp 209–225 | Cite as

Arbuscular Mycorrhizas, Microbial Communities, Nutrient Availability, and Soil Aggregates in Organic Tomato Production

  • T. R. Cavagnaro
  • L. E. Jackson
  • J. Six
  • H. Ferris
  • S. Goyal
  • D. Asami
  • K. M. Scow


Effects of arbuscular mycorrhzal (AM) fungi on plant growth and nutrition are well-known, but their effects on the wider soil biota are less clear. This is in part due to difficulties with establishing appropriate non-mycorrhizal controls in the field. Here we present results of a field experiment using a new approach to overcome this problem. A previously well-characterized mycorrhizal defective tomato mutant (rmc) and its mycorrhizal wildtype progenitor (76R MYC+) were grown at an organic fresh market tomato farm (Yolo County, CA). At the time of planting, root in-growth cores amended with different levels of N and P, were installed between experimental plants to study localized effects of mycorrhizal and non-mycorrhizal tomato roots on soil ecology. Whilst fruit yield and vegetative production of the two genotypes were very similar at harvest, there were large positive effects of colonization of roots by AM fungi on plant nutrient contents, especially P and Zn. The presence of roots colonized by AM fungi also resulted in improved aggregate stability by increasing the fraction of small macroaggregates, but only when N was added. Effects on the wider soil community including nematodes, fungal biomass as indicated by ergosterol, microbial biomass C, and phospholipid fatty acid (PLFA) profiles were less pronounced. Taken together, these data show that AM fungi provide important ecosystem functions in terms of plant nutrition and aggregate stability, but that a change in this one functional group had only a small effect on the wider soil biota. This indicates a high degree of stability in soil communities of this organic farm.


aggregates arbuscular mycorrhizal fungi tomato mutant nematode organic farm PLFA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrassy, I 1956Die Rauminhalts und Gewichtsbestimmung der Fadenwürmer (Nematoden)Acta Zoo. Acad. Sci., Hung.2115Google Scholar
  2. Arines, J, Vilarino, A, Sainz, M 1989Effect of different inocula of vesicular–arbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pretense L.) plants regenerated from selected cell culturesSoil Sci. Plant Nutr.37699705Google Scholar
  3. Bakhtiar, Y, Miller, D, Cavagnaro, T R, Smith, S E 2001Interactions between two arbuscular mycorrhizal fungi and fungivorous nematodes and control of the nematode with fenamifosAppl. Soil Ecol.17107117CrossRefGoogle Scholar
  4. Barker, K R 1985Nematode extraction and bioassaysBarker, K RCarter, C CSasser, J N eds. An Advanced Treatise on Meloidogyne, Vol 2 MethodologyNorth Carolina State University GraphicsRaleigh, NC1935Google Scholar
  5. Barker, S J, Stummer, B, Gao, L, Dispain, I, O’Connor, P J, Smith, S E 1998A mutant in Lycopersicon esculentum Mill with highly reduced VA mycorrhizal colonization, isolation and preliminary characterisationPlant J.15791797CrossRefGoogle Scholar
  6. Bligh, E G, Dyer, W M 1959A rapid method of lipid extraction and purificationCan. J. Biochem. Phys.35911917Google Scholar
  7. Bossio, D A, Scow, K M 1998Impacts of carbon and flooding on soil microbial communities, phospholipid fatty acid profiles and substrate utilization patternsMicrobial Ecol.35265278CrossRefGoogle Scholar
  8. Bossio, D A, Scow, K M, Gunapala, N, Graham, K J 1998Determinants of soil microbial communities, effects of agricultural management, season, and soil type on phospholipid fatty acid profilesMicrobial Ecol.36112CrossRefGoogle Scholar
  9. Burleigh, S H, Cavagnaro, T R, Jakobsen, I 2002Functional diversity of arbuscular mycorrhizas extends to expression of plant genes involved in P nutritionJ. Exp. Bot.5319CrossRefGoogle Scholar
  10. Carpenter-Boggs, L, Kennedy, A C, Reganold, J P 2000Organic and biodynamic management, effects on soil biologySoil Sci. Soc. Am. J.6416511659CrossRefGoogle Scholar
  11. Cavagnaro, T R, Smith, F A, Hay, G, Carne-Cavagnaro, V L, Smith, S E 2004Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonisation but inoculation does change competitive interactions with wild-type tomatoNew Phytol.161485494CrossRefGoogle Scholar
  12. Cavagnaro, T R, Smith, F A, Smith, S E, Jakobsen, I 2005Functional diversity in arbuscular mycorrhizas, exploitation of soil patches with different phosphate enrichment differs among fungal speciesPlant Cell Environ.28642650CrossRefGoogle Scholar
  13. David-Schwartz, R, Badani, H, Smadar, W, Levy, A A, Galili, G, Kapulnik, Y 2001Identification of a novel genetically controlled step in mycorrhizal colonization, plant resistance to infection by fungal spores but not extra-radical hyphaePlant J.27561569PubMedCrossRefGoogle Scholar
  14. Deyn, G B, Raaijmakers, C E, Zoomer, H R, Berg, M P, Ruiter, P C, Verhoef, H A, Bezemer, T M, Putten, W H 2001Soil invertebrate fauna enhances grassland succession and diversityNature422711713CrossRefGoogle Scholar
  15. Dixon, R K, Garrett, H E, Cox, G S 1989Boron fertilization, vesicular–arbuscular mycorrhizal colonization and growth of Citrus jambhiri LushJ. Plant Nutr.12687700Google Scholar
  16. Djajakirana, G, Joergensen, R G, Meyer, B 1996Ergosterol and microbial biomass relationship in soilBiol. Fert. Soils22299304Google Scholar
  17. Drinkwater, L E, Letourneau, D K, Workneh, F, Bruggen, A H C, Shennan, C 1995Fundamental differences between conventional and organic tomato agroecosystems in CaliforniaEcol. Appl.510981112Google Scholar
  18. Duc, G, Trouvelot, A, Gianinazzi-Pearson, V, Gianinazzi, S 1989First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia Faba L.)Plant Sci.60215222CrossRefGoogle Scholar
  19. Elliott, E T 1986Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soilsSoil Sci. Soc. Am. J.50627633CrossRefGoogle Scholar
  20. Facelli, E, Facelli, J M 2002Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distributionOecologia.1335461CrossRefGoogle Scholar
  21. Ferris, H, Matute, M 2003Structural and functional succession in the nematode fauna of a soil food webAppl. Soil Ecol.2393110CrossRefGoogle Scholar
  22. Ferris, H, Bongers, T, Goede, R G M 2001Nematode faunal profiles of soil ecosystemsJ. Nematol.33257Google Scholar
  23. Fitter, A H, Sanders, I R 1992Mycorrhizal functioning, interactions with the soil faunaAllen, M FAllen, E eds. Mycorrhizal FunctioningChapman & HallNY333354Google Scholar
  24. Forster, J C 1995Soil nitrogenAlef, KNannipiero, P eds. Methods in Applied Soil Microbiology and BiochemistryAcademic PressSan Diego, CA7987Google Scholar
  25. Frey, B, Schuepp, H 1993Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays LNew Phytol.124221230CrossRefGoogle Scholar
  26. Gange, A C 2000Arbuscular mycorrhizal fungi, collembola and plant growthTrends Ecol. Evol.15369372PubMedCrossRefGoogle Scholar
  27. Gao, L-L, Delp, G, Smith, S E 2001Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungiNew Phytol.151477491CrossRefGoogle Scholar
  28. Gianinazzi-Pearson, V, Gianinazzi, S, Guillemin, JP, Trouvelot, A, Duc, G 1991 Genetic and cellular analysis of resistance to vesicular aubuscular (VA) mycorrhizal fungi in pea mutantsHennecke, HVerma, D P S eds. Advances in Molecular Genetics of Plant–Microbe InteractionsKluwer Academic PublishersDordrecht, The Netherlands336342Google Scholar
  29. Giovannetti, M, Mosse, B 1980An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in rootsNew Phytol.84489500CrossRefGoogle Scholar
  30. Graham, J H, Leonard, R T, Menge, J A 1981Membrane-mediated decrease of root-exudation responsible for phosphorus inhibition of vesicular–arbuscular mycorrhiza formationPlant Physiol.6548552Google Scholar
  31. Green, C T, Scow, K M 2000Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifersHydrogeol. J.8126141CrossRefGoogle Scholar
  32. Guckert, J B, Hood, M A, White, D C 1986Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae, increase in the trans/cis ratio and proportions of cyclopropyl fatty acidsAppl. Env. Microb.52794801Google Scholar
  33. Harrison, M J 1999Molecular and cellular aspects of the arbuscular mycorrhizal symbiosisAn. Rev. Plant Physiol.50361389CrossRefGoogle Scholar
  34. Hart, M M, Reader, R J 2003aDoes percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF?Mycorrhiza12297301CrossRefGoogle Scholar
  35. Hart, M M, Reader, R J 2003bErgosterol and mycorrhizal fungi, the way forwardNew Phytol.159536537CrossRefGoogle Scholar
  36. Heipieper, H J, Diffenbach, R, Kewwloh, H 1992Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection on phenol-degrading Pseudomonas putida P8 from substrate toxicityAppl. Env. Microb.5818471852Google Scholar
  37. Hetrick, B A D 1991Mycorrhizas and root architectureExperientia47355362CrossRefGoogle Scholar
  38. Hole, D G, Perkins, A J, Wilson, J D, Alexander, I H, Grice, P V, Evans, A D 2005Does organic farming benefit biodiversity?Biol. Conserv.122113130CrossRefGoogle Scholar
  39. Hurst C J, Knudsen G R, McInerney M J, Stetzenbach L D and Walter M V (Eds.) 1996 Manual of Environmental Microbiology. American Society for Microbiology, Washington, DCGoogle Scholar
  40. Jackson, R B, Manwaring, J H, Caldwell, M M 1990Rapid physiological adjustment of roots to localized soil enrichmentNature3445860CrossRefPubMedGoogle Scholar
  41. Johansen, A, Jakobsen, I, Jensen, E S 1993External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum. 3. Hyphal transport of 32P and 15NNew Phytol.1246168CrossRefGoogle Scholar
  42. Johansson, J F, Paul, L R, Finlay, R D 2004Microbial interactions in the mycorrhizosphere and their significance for sustainable agricultureFEMS Microb. Ecol.48113CrossRefGoogle Scholar
  43. Johnson, N C, Graham, J H, Smith, F A 1997Functioning of mycorrhizal associations along the mutualism–parasitism continuumNew Phytol.135575586CrossRefGoogle Scholar
  44. Koide, R T 1991Density-dependent response to mycorrhizal infection in Abutilon theophrasti MedicOecologia85389395CrossRefGoogle Scholar
  45. Kothari, S K, Marschner, H, Romheld, V 1991Effect of vesicular–arbuscular mycorrhizal fungus and rhizosphere microorganisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L)New Phytol.117649655CrossRefGoogle Scholar
  46. Lambers, H, Chapin, F S,III, Pons, T L 1998Plant Physiology EcologySpringer-VerlagNY, USAGoogle Scholar
  47. Lundquist, E J, Scow, K M, Jackson, L E, Uesugi, S L, Johnson, C R 1999Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycleSoil Biol. Biochem.3116611675CrossRefGoogle Scholar
  48. Mäder, P, Fliessbach, A, Dubois, D, Gunst, L, Fried, P, Niggli, U 2002Soil fertility and biodiversity in organic farmingScience29616941697PubMedCrossRefGoogle Scholar
  49. Marschner, H. 1995Mineral Nutrition of Higher Plants2Academic Press LtdSan Diego, CAGoogle Scholar
  50. Marschner, H, Dell, B 1994Nutrient uptake in mycorrhizal symbiosisPlant and Soil15989102Google Scholar
  51. Marschner, P, Baumann, B 2003Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maizePlant and Soil251279289CrossRefGoogle Scholar
  52. Marschner, P, Crowley, D E, Lieberei, R 2001Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maizeMycorrhiza11297302CrossRefGoogle Scholar
  53. Menge, J A 1983Utilization of vesicular–arbuscular mycorrhizal fungi in agricultureCan. J. Bot.6110151024CrossRefGoogle Scholar
  54. Miller, R M, Jastrow, J D 2000Mycorrhiza fungi influence soil structureKapulnik, YDouds, D D eds. Arbuscular Mycorrhizas, Physiology and FunctionKluwer Academic PublishersDordrecht, The Netherlands318Google Scholar
  55. Miller, R L, Jackson, L E 1997Survey of vesicular–arbuscular mycorrhizae in lettuce production in relation to management and soil factorsJ. Agr. Sci.130173182CrossRefGoogle Scholar
  56. Miranda, K M, Espey, M G, Wink, D A 2001A rapid, simple spectrophotometric method for simultaneous determination of nitrate and nitriteNitrc. oxide56271CrossRefGoogle Scholar
  57. Morgan, J A 1986The effects of nitrogen nutrition on the water relations and gas exchange characteristics of wheat (Triticum aestivum)Plant Physiol.805258PubMedGoogle Scholar
  58. Nichols, P D, Smith, G A, Antworth, C P, Hanson, R S, White, D C 1985Phospholipid and lipopolysaccharide normal and hydroxyl fatty acids as potential signatures for methoan-oxidizing bacteriaFEMS Microb. Ecol.31327335Google Scholar
  59. Olsson, P A, Bååth, E, Jakobsen, I, Söderström, B 1995The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soilMycol. Res.99623629CrossRefGoogle Scholar
  60. Olsson, P A, Bååth, E, Jakobsen, I, Söderström, B 1996Soil bacteria respond to presence of roots but not to arbuscular mycorrhizal myceliumSoil Biol. Biochem.28463470CrossRefGoogle Scholar
  61. Olsson, P A, Jakobsen, I, Wallander, H 2002Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environmentEcol. Stud.15793115Google Scholar
  62. Olsson, P A, Larsson, L, Bago, B, Wallander, H, Aarle, I M 2003Ergosterol and fatty acids for biomass estimation of mycorrhizal fungiNew Phytol.159710CrossRefGoogle Scholar
  63. Paulitz, T C, Linderman, R G 1989Interactions between fluorescent Pseudomonads and VA mycorrhizal fungiNew Phytol.1133745CrossRefGoogle Scholar
  64. Perrin, R 1990Interactions between mycorrhizae and diseases caused by soil-borne fungiSoil Use Manage.6189195Google Scholar
  65. Phillips, J M, Hayman, D S 1970Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infectionTrans. Brit. Mycol. Soc.55158161CrossRefGoogle Scholar
  66. Poulsen, K H, Nagy, R, Gao, L-L, Smith, S E, Bucher, M, Smith, F A, Jakobsen, I 2005Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungusNew Phytol.168445454PubMedCrossRefGoogle Scholar
  67. Robertson, G P, Klingensmith, K M, Klug, M J, Paul, E A, Crum, J R, Ellis, B G 1997Soil resources, microbial activity, and primary production across an agricultural ecosystemEcol. Appl.7158170Google Scholar
  68. Ryan, M H, Angus, J F 2003Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yieldPlant and Soil250225239CrossRefGoogle Scholar
  69. Sah, R N, Miller, R O 1992Spontaneous reaction for acid dissolution of biological tissues in closed vesselsAnal. Chem.64230233PubMedCrossRefGoogle Scholar
  70. Shangguan, Z P, Shao, M A, Dyckmans, J 2000Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheatEnv. Exp. Bot.44141149CrossRefGoogle Scholar
  71. Smith, S E, Read, D J 1997Mycorrhizal Symbiosis2Academic Press LtdCambridge, UKGoogle Scholar
  72. St John, T V, Coleman, D C, Reid, C P P 1983Growth and spatial distribution of nutrient absorbing organs, selective exploitation of soil heterogeneityPlant and Soil71487493CrossRefGoogle Scholar
  73. Steenwerth, K L, Jackson, L E, Calderón, F J, Stromberg, M R 2002Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal CaliforniaSoil Biol. Biochem.3415991611CrossRefGoogle Scholar
  74. Sukarno, N, Smith, S E, Scott, E S 1993The effect of fungicides on the vesicular–arbuscular mycorrhizal symbiosis. I. The effects on vesicular–arbuscular mycorrhizal fungi and plant growthNew Phytol.123139147CrossRefGoogle Scholar
  75. Tenuta, M, Ferris, H 2004Sensitivity of nematode life-history groups to ions and osmotic tensions of nitrogenous solutionsJ. Nematol.368594PubMedGoogle Scholar
  76. ter Braak, C J F,  et al. 1987OrdinationJongman, R H eds. Data Analysis in Community and Landscape EcologyCenter for Agricultural Publishing and DocumentationWageningen, The Netherlands91169Google Scholar
  77. Tibbett, M 2000Roots, foraging and the exploitation of soil nutrient patches, the roles of mycorrhizal symbiosisFunct. Ecol.14397399CrossRefGoogle Scholar
  78. Tisdall, J M, Oades, J M 1979Stabilization of soil aggregates by the root systems of ryegrassAust. J. Soil Res.17429441CrossRefGoogle Scholar
  79. Tisdall, J M 1991Fungal hyphae and structural stability of soilAust. J. Soil Res.29729743CrossRefGoogle Scholar
  80. Vance, E D, Brookes, P D, Jenkinson, D S 1987An extraction method to estimate soil microbial biomass CSoil Biol. Biochem.19703707CrossRefGoogle Scholar
  81. Villegas, J, Fortin, J A 2001Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH 4 + as nitrogen sourceCan. J. Bot.79865870CrossRefGoogle Scholar
  82. Wamberg, C, Christensen, S, Jakobsen, I, Muller, A K, Sorensen, S J 2003The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum)Soil Biol. Biochem.3513491357CrossRefGoogle Scholar
  83. Welch, R M, Graham, R D 2004Breeding for micronutrients in staple food crops from a human nutrition perspectiveJ. Exp. Bot.55353364PubMedCrossRefGoogle Scholar
  84. Zar, J H 1999Biostatistical AnalysisPrentice HallNew Jersey, USAGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • T. R. Cavagnaro
    • 1
  • L. E. Jackson
    • 1
  • J. Six
    • 2
  • H. Ferris
    • 3
  • S. Goyal
    • 2
  • D. Asami
    • 4
  • K. M. Scow
    • 1
  1. 1.Department of Land, Air and Water ResourcesUniversity of California DavisDavisUnited States
  2. 2.Department of Plant SciencesUniversity of California DavisDavisUnited States
  3. 3.Department of NematologyUniversity of California DavisDavisUnited States
  4. 4.Department of Human NutritionUniversity of California DavisDavisUnited States

Personalised recommendations