Plant and Soil

, Volume 282, Issue 1–2, pp 127–134 | Cite as

Physiological Indicators of Plant Water Status of Irrigated and Non-irrigated Grapevines Grown in a Low Rainfall Area of Portugal

  • T. A. Sousa
  • M. T. Oliveira
  • J. M. Pereira


Water is a key resource in commercial wine production and both large excesses and deficits have undesirable effects upon the amount and quality of the wine produced. A balance between the water requirements of a fully developed canopy and the induced stress necessary for the commercial quality of the wine must be reached. Thus we need a physiological indicator that integrates both soil and climatic conditions to use as a management tool. An experimental field was established in the eastern part of the Demarcated Region of Douro – Portugal, to study the effect of water supply on the quality of the musts produced and we need a physiological indicator that relates to the water use and stress of the grapevines (Vitis vinifera L.) and to the later evaluation of the effect of irrigation practices upon the quality of the musts. We chose as indicators sap flow, leaf water potential at pre-dawn (0600 h), mid-morning (1000 h), solar noon (1400 h) and sunset (1900 h), stomatal conductance and leaf transpiration both measured at mid-morning and at solar noon, and related them to our experimental treatments that induce differences in soil water content, evaluated with time-domain reflectometry probes, with the objective of selecting the indicator that best describes the plant water status under different amounts of available water. Sap flow, leaf water potential and leaf transpiration rate measured at solar noon had highly significant correlations with soil water content and their regression on soil water content was also highly significant. Each of these parameters has shortcomings and none has a clear advantage over the other two as an integrator of the environmental conditions under these experimental conditions. Further studies of the parameters and their relationship with the quality characteristics of the produced musts are needed to achieve the ultimate objective of manipulating the soil water content.


leaf transpiration leaf water potential sap flow stomatal conductance TDR Vitis vinifera 



Demarcated Region of Douro


Leaf transpiration rate


stomatal conductance


sap flow


soil water


Thermal Dissipation


Leaf water potential


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansley, S J, Dugas, W A, Heuer, M L, Trevino, B A 1994Trunk flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa)J. Exp. Bot.45847856Google Scholar
  2. Assmann, S M 2003OPEN STOMATA1 opens the door to ABA signalling in Arabidopsis guard cellsTrends Plant Sci.8151153PubMedCrossRefGoogle Scholar
  3. Baker, J M 2003Recalcitrant problems in environmental instrumentationAgron. J.9514041407CrossRefGoogle Scholar
  4. Braun, P, Schmid, I 1999Sap flow measurements in grapevines. I. Stem morphology and the use of the heat balance methodPlant and Soil2153945CrossRefGoogle Scholar
  5. Burt, C M, Mutziger, A J, Allen, R G, Howell, T A 2005Evaporation research, review and interpretationJ. Irrig. Drain. Eng.1313758CrossRefGoogle Scholar
  6. Choné, X, Leeuwen, C, Dubourdieu, D, Gaudiller, J P 2001Stem water potential is a sensitive indicator of grapevine water statusAnn. Bot.87477483CrossRefGoogle Scholar
  7. COBA1987Carta de solos e carta de utilização actual do solo do nordeste de PortugalUniversidade de Trás os Montes e Alto DouroVila Real, Portugal235Google Scholar
  8. Cohen, Y 1994Thermoelectric methods for measurement of sap flow in plantsStanhill, G eds. Advances in BioclimatologySpringer-VerlagNew York6389Google Scholar
  9. Escalona, J, Flexas, J, Medrano, H 2002Drought effects on water flow, photosynthesis and growth of potted grapevinesVitis415762Google Scholar
  10. Fernández, J E, Palomo, M J, Díaz-Espejo, A, Clothier, B E, Green, S R, Girón, I F, Moreno, F 2001Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stressAgric. Water Manage.5199123CrossRefGoogle Scholar
  11. Flexas, J, Bota, J, Escalona, J M, Sampol, B, Medrano, H 2002Effects of drought on photosynthesis under field conditions, an evaluation of stomatal and mesophyll limitationsFunct. Plant Biol.29461471CrossRefGoogle Scholar
  12. Green, S, Clothier, B, Jardine, B 2003Theory and practical application of heat pulse to measure sap flowAgron. J.9513711379CrossRefGoogle Scholar
  13. Habermann, H, Machado, E C, Rodrigues, J D, Medina, C L 2003Gas exchange rates at different vapor pressure deficits and water relations of ‘Pera’ sweet orange plants with citrus variegated chlorosis (CVC)Sci. Hort.98233245CrossRefGoogle Scholar
  14. Harris, M J, Outlaw, W H 1991Rapid adjustment of guard-cell abscisic acid levels to current leaf-water statusPlant Physiol.95171173PubMedCrossRefGoogle Scholar
  15. Jackson, R B, Sperry, J S, Dawson, T E 2000Root water uptake and transport, using physiological processes in global predictionsTrends Plant Sci.5482488PubMedCrossRefGoogle Scholar
  16. Kato, T, Kimura, R, Kamichika, M 2004Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment modelAgric. Water Manage.65173191CrossRefGoogle Scholar
  17. Lebon, E, Dumas, V, Pieri, P, Schultz, H R 2003Modeling the seasonal dynamics of the soil water balance of vineyardsFunct. Plant Biol.30699710CrossRefGoogle Scholar
  18. Li, Y, Cohen, Y, Wallach, R, Cohen, S, Fuchs, M 2004On quantifying soil water deficit of a partially wetted root zone by the response of canopy or leaf conductanceAgric. Water Manage.652138CrossRefGoogle Scholar
  19. Link, M E, Thiede, M E, Bavel, M G 1998An improved strain-gauge device for continuous field measurement of trunk and fruit diameterJ. Exp. Bot.4915831587CrossRefGoogle Scholar
  20. Long, D S, Wraith, J M, Kegel, G 2002A heavy-duty time domain reflectometry soil moisture probe for use in intensive field samplingSoil Sci. Soc. Am. J.66396401CrossRefGoogle Scholar
  21. Lu, P, Urban, L, Ping, Z 2004Granier’s Thermal dissipation probe (TDP) method for measuring sap flow in trees, theory and practiceActa Bot. Sin.46631646Google Scholar
  22. Lu, P, Yunusa, I A M, Walker, R R, Müller, W J 2003Regulation of canopy conductance and transpiration and their modeling in irrigated grapevinesFunct. Plant Biol.30689698CrossRefGoogle Scholar
  23. Matthews, M A, Ishii, R, Anderson, M M, O’Mahony, M 1990Dependence of wine sensory attributes on vine water statusJ. Sci. Food Agric.51321335Google Scholar
  24. Medrano, H, Escalona, H J M, Bota, J, Gulías, J, Flexas, J 2002Regulation of photosynthesis of C3 plants in response to progressive drought, stomatal conductance as a reference parameterAnn. Bot.89895905PubMedCrossRefGoogle Scholar
  25. Meinzer, F C 2003Functional convergence in plant responses to the environmentOecologia134111PubMedCrossRefGoogle Scholar
  26. Mendes, J C 1991Normas climatológicas da região de Trás os Montes e Alto Douro e Beira InteriorINMGLisboa235Google Scholar
  27. Nagler, P L, Glenn, E P, Thompson, T L 2003Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methodsAgric. Forest Meteorol.1167389CrossRefGoogle Scholar
  28. Naor, A, Wample, R L 1994Gas exchange and water relations of field grown concord (Vitis labruscana Bailey) grapevinesAm. J. Enol. Vitic.45333337Google Scholar
  29. Nicolas, E, Torrecillas, A, Ortuño, M F, Domingo, R, Alarcón, J J 2005Evaluation of transpiration in adult apricot trees from sap flow measurementsAgric. Water Manage.72131145CrossRefGoogle Scholar
  30. Ortuño, M F, Alarcón, J J, Nicolás, E, Torrecillas, A 2004Comparison of continuously recorded plant-based water stress indicators for young lemon treesPlant and Soil267 263270CrossRefGoogle Scholar
  31. Padgett-Johnson, M, Williams, L E, Walker, M A 2003Vine water relations, gas exchange, and vegetative growth of seventeen Vitis species grown under irrigated and nonirrigated conditions in CaliforniaJ. Am. Soc. Hort. Sci.128269276Google Scholar
  32. Patakas, A, Noitsakis, B, Chouzouri, A 2005Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water statusAgric. Ecosyst. Environ.106253259CrossRefGoogle Scholar
  33. Pataki, D E, Oren, R 2003Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forestAdv. Water Resour.2612671278CrossRefGoogle Scholar
  34. Pellegrino, A, Lebon, E, Voltz, M, Wery, J 2004Relationships between plant and soil water status in vine (Vitis vinifera L.)Plant and Soil266129142CrossRefGoogle Scholar
  35. Rana, G, Katerji, N 2000Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate, a reviewEur. J. Agron.13125153CrossRefGoogle Scholar
  36. Remorini, D, Massai, R 2003Comparison of water status indicators for young peach treesIrrig. Sci.223946Google Scholar
  37. Reynolds, A G, Naylor, A P 1994“Pinot noir” and “Riesling” grapevines respond to water stress duration and soil water holding capacityHortscience2915051510Google Scholar
  38. Scholander, P F, Hammel, H J, Bradstreet, A, Hemmingsen, E A 1965Sap pressure in vascular plantsScience148339346PubMedGoogle Scholar
  39. Sellami, M H, Sefaoui, M S 2003Estimating transpiration in an intercropping system, measuring sap flow inside the oasisAgric. Water Manage.59191204CrossRefGoogle Scholar
  40. Smith, D M, Allen, S J 1996Measurement of sap flow in plant trunksJ. Exp. Bot.4718331844Google Scholar
  41. Souza, C R, Maroco, J P, Santos, T P, Rodrigues, M L, Lopes, C, Pereira, J S, Chaves, M M 2005Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivarsAgric. Ecosyst. Environ.106261274CrossRefGoogle Scholar
  42. Trambouze, W, Voltz, M 2001Measurement and modeling of the transpiration of a Mediterranean vineyardAgric. Forest Meteorol.107153166CrossRefGoogle Scholar
  43. Trambouze, W, Bertuzzi, P, Voltz, M 1998Comparison of methods for estimating actual evapotranspiration in a row-cropped vineyardAgric. Forest Meteorol.91193208CrossRefGoogle Scholar
  44. Leeuwen, C, Seguin, G 1994Incidences de l’alimentation en eau de la vigne, appreciée par l’etat hydrique du feuillage, sur le dévelopment de l’appareil végétatif et la maturation du raisinJ. Int. Sci. Vigne Vin2881110Google Scholar
  45. Wilkinson, S, Davies, W J 1997Xylem sap pH increase, a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplastPlant Physiol.113559573PubMedGoogle Scholar
  46. Wullschleger, S D, Meinzer, F C, Vertessy, R A 1998A review of whole-plant water use studies in treesTree Physiol.18499512PubMedGoogle Scholar
  47. Yunusa, I A M, Walker, R R, Guy, J R 1997Partitioning of seasonal evapotranspiration from a commercial furrow-irrigated Sultana vineyardIrrig. Sci.184554CrossRefGoogle Scholar
  48. Yunusa, I A M, Walker, R R, Lu, P 2004Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland AustraliaAgric. Forest Meteorol.12793107CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.UTADVila RealPortugal
  2. 2.CECEA – UTAD – FitotecniaVila RealPortugal
  3. 3.CETAV – UTADVila RealPortugal

Personalised recommendations