Plant and Soil

, Volume 281, Issue 1–2, pp 269–279 | Cite as

Variation for Root Aerenchyma Formation in Flooded and Non-Flooded Maize and Teosinte Seedlings

  • Y. Mano
  • F. Omori
  • T. Takamizo
  • B. Kindiger
  • R. McK. Bird
  • C. H. Loaisiga
Article

Abstract

Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three- and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.

Keywords

aerenchyma flooding maize teosinte Zea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arikado, H, Adachi, Y 1955Anatomical and ecological responses of barley and some forage crops to the flooding treatmentBull. Fac. Agric. Mie Univ.11129Google Scholar
  2. Armstrong, W, Justin, S H F W, Beckett, P M, Lythe, S 1991Root adaptation to soil waterloggingAquat. Bot.395773CrossRefGoogle Scholar
  3. Armstrong, J, Armstrong, W 2005Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergenceAnn. Bot.96625638CrossRefPubMedGoogle Scholar
  4. Bird, R McK 2000A remarkable new teosinte from Nicaragua: Growth and treatment of progenyMaize Gen. Coop. Newsl.745859Google Scholar
  5. Burdick, D M 1989Root aerenchyma development in Spartina patens in response to floodingAm. J. Bot.76777780CrossRefGoogle Scholar
  6. Clark, R B, Alberts, E E, Zobel, R W, Sinclair, T R, Miller, M S, Kemper, W D, Foy, C D 1998Eastern gamagrass (Tripsacum dactyloides) root penetration into and chemical properties of claypan soilsPlant Soil2003345CrossRefGoogle Scholar
  7. Colmer, T D 2003Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.)Ann. Bot.91301309CrossRefPubMedGoogle Scholar
  8. Drew, M C, He, C J, Morgan, P W 2000Programmed cell death and aerenchyma formation in rootsTrends Plant Sci.5123127CrossRefPubMedGoogle Scholar
  9. Evans, D E 2003Aerenchyma formationNew Phytol.1613549CrossRefGoogle Scholar
  10. Garthwaite, A J, Bothmer, R, Colmer, T D 2003Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum Funct. Plant Biol.30875889CrossRefGoogle Scholar
  11. Gunawardena, A H L A N, Pearce, D M, Jackson, M B, Hawes, C R, Evans, D E 2001Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.)Planta212205214CrossRefPubMedGoogle Scholar
  12. Harlan, J R 1976Genetic resources in wild relatives of cropsCrop Sci.16329333CrossRefGoogle Scholar
  13. He, C J, Finlayson, S A, Drew, M C, Jordan, W R, Morgan, P W 1996Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxiaPlant Physiol.11216791685PubMedGoogle Scholar
  14. Iltis, H H, Benz, B F 2000Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal NicaraguaNovon10382390Google Scholar
  15. Jackson, M B, Fenning, T M, Drew, M C, Saker, L R 1985Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressure of oxygenPlanta165486492CrossRefGoogle Scholar
  16. Jat, R L, Dravid, M S, Das, D K, Goswami, N N 1975Effect of flooding and high soil water condition on root porosity and growth of maizeJ. Indian Soc. Soil Sci.23291297Google Scholar
  17. Konings, H, Verschuren, G 1980Formation of aerenchyma in roots of Zea mays in aerated solutions, and its relation to nutrient supplyPhysiol. Plant.49265270CrossRefGoogle Scholar
  18. Lizaso, J I, Melendez, L M, Ramirez, R 2001Early flooding of two cultivars of tropical maize. I. shoot and root growthJ. Plant Nutr.24979995CrossRefGoogle Scholar
  19. Mano, Y, Muraki, M, Komatsu, T, Fujimori, M, Akiyama, F, Takamizo, T 2002Varietal difference in pre-germination flooding tolerance and waterlogging tolerance at the seedling stage in maize inbred accessionsJpn. J. Crop Sci.71361367Google Scholar
  20. Mano, Y, Muraki, M, Fujimori, M, Takamizo, T 2005aVarietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlingsJpn. J. Crop Sci.744146CrossRefGoogle Scholar
  21. Mano, Y, Muraki, M, Fujimori, M, Takamizo, T, Kindiger, B 2005bIdentification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlingsEuphytica1423342CrossRefGoogle Scholar
  22. Mano, Y, Omori, F, Muraki, M, Takamizo, T 2005cQTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlingsBreeding Sci.55343347CrossRefGoogle Scholar
  23. McDonald, M P, Galwey, N W, Colmer, T D 2001Waterlogging tolerance in the tribe Triticeae: The adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen lossPlant Cell Environ.24585596CrossRefGoogle Scholar
  24. Ray, J D, Kindiger, B, Sinclair, T R 1999Introgressing root aerenchyma into maizeMaydica44113117Google Scholar
  25. Saab, I N, Sachs, M M 1996A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchymaPlant Physiol.112385391CrossRefPubMedGoogle Scholar
  26. Stanca, A M, Romagosa, I, Takeda, K, Lundborg, T, Terzi, V, Cattivelli, L 2003Diversity in abiotic stress tolerancesBothmer, RHintum, ThKnüpffer, HSato, K eds. Diversity in Barley (Hordeum vulgare)Elsevier Science B.V.Amsterdam280Google Scholar
  27. Subbaiah, C C, Sachs, M M 2003Molecular and cellular adaptations of maize to flooding stressAnn. Bot. London91119127CrossRefGoogle Scholar
  28. Takeda, K 1989Varietal variation of flooding tolerance in barley seedlings, and its diallel analysisJpn J. Breed.39174175Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Y. Mano
    • 1
  • F. Omori
    • 1
  • T. Takamizo
    • 1
  • B. Kindiger
    • 2
  • R. McK. Bird
    • 3
  • C. H. Loaisiga
    • 4
  1. 1.National Institute of Livestock and Grassland ScienceNasushiobara, TochigiJapan
  2. 2.USDA ARS Grazinglands Research LaboratoryEl Reno, OklahomaUSA
  3. 3.Department of Crop ScienceNorth Carolina State UniversityRaleigh, North CarolinaUSA
  4. 4.REGEN-FAGROUniversidad Nacional AgrariaManaguaNicaragua

Personalised recommendations