Plant and Soil

, Volume 281, Issue 1–2, pp 109–120 | Cite as

Distribution of Carboxylates and Acid Phosphatase and Depletion of Different Phosphorus Fractions in the Rhizosphere of a Cereal and Three Grain Legumes

  • Mohammad Nuruzzaman
  • Hans Lambers
  • Michael D. A. Bolland
  • Erik J. VeneklaasEmail author


This study investigates the distribution of carboxylates and acid phosphatases as well as the depletion of different phosphorus (P) fractions in the rhizosphere of three legume crop species and a cereal, grown in a soil with two different levels of residual P. White lupin (Lupinus albus L.), field pea (Pisum sativum L.), faba bean (Vicia faba L.) and spring wheat (Triticum aestivum L.) were grown in small sand-filled PVC tubes to create a dense root mat against a 38-μm mesh nylon cloth at the bottom, where it was in contact with the soil of interest contained in another tube. The soil had either not been fertilised (P0) or fertilised with 15 (P15) kg P ha−1 in previous years. The mesh size did not allow roots to grow into the soil, but penetration of root hairs and diffusion of nutrients and root exudates was possible, and a rhizosphere was established. At harvest, thin (1 mm) slices of this rhizosphere soil were cut, down to a 10-mm distance from the mesh surface. The rhizosphere of white lupin, particularly in the P0 treatment, contained citrate, mostly in the first 3 mm, with concentrations decreasing with distance from the root. Acid phosphatase activity was enhanced in the rhizosphere of all species, as compared with bulk soil, up to a distance of 4 mm. Phosphatase activity was highest in the rhizosphere of white lupin, followed by faba bean, field pea and wheat. Both citrate concentrations and phosphatase activities were higher in P0 compared with P15. The depletion of both inorganic (Pi) and organic (Po) phosphorus fractions was greatest at the root surface, and decreased gradually with distance from the root. The soil P fractions that were most depleted as a result of root activity were the bicarbonate-extractable (0.5 M) and sodium hydroxide-extractable (0.1 M) pools, irrespective of plant species. This study suggests that differences among the studied species in use of different P pools and in the width of the rhizosphere are relatively small.


faba bean field pea root exudates rhizosphere soil phosphorus fractions white lupin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M A, Pate, J S 1992Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.)Plant Soil145107113CrossRefGoogle Scholar
  2. Allen D G and Jeffery R C, 1990 Methods of analysis of phosphorus in Western Australian soils. Chemistry Centre of Western Australia, Report of Investigation no. 37, PerthGoogle Scholar
  3. Anderson, G 1980Assessing organic phosphorus in soilsKhasawneh, F ESample, E CKamprath, E J eds. The Role of Phosphorus in AgricultureAmerican Society of AgronomyMadison411431Google Scholar
  4. Bates, T R, Lynch, J P 1996Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availabilityPlant Cell Environ.19529538CrossRefGoogle Scholar
  5. Bhat, K K S, Nye, P H, Balawin, J P 1976Diffusion of phosphate to plant roots in soil. IV. The concentration distance profile in the rhizosphere of roots with root hairs in a low P soilPlant Soil446372CrossRefGoogle Scholar
  6. Braum, S M, Helmke, P A 1995White lupin utilises soil phosphorus that is unavailable to soybeanPlant Soil17695100CrossRefGoogle Scholar
  7. Cawthray, G R 2003An improved reversed-phase liquid chromatography method for the analysis of low-molecular mass organic acids in plant root exudatesJ. Chrom. A1011233240CrossRefGoogle Scholar
  8. Colwell, J D 1963The estimation of phosphorus fertilisers requirements of wheat in southern New South Wales by soil analysisAust. J. Exp. Agric. Anim. Husb.3190197CrossRefGoogle Scholar
  9. Dalal, R C 1977Soil organic phosphorusAdv. Agron.2985117Google Scholar
  10. Dinkelaker, B, Römheld, V, Marschner, H 1989Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)Plant Cell Environ.12285292CrossRefGoogle Scholar
  11. Ebina, J, Tsutsui, T, Shirai, T 1983Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidationWater Res.1717211726CrossRefGoogle Scholar
  12. Fitz, W J, Wenzel, W W, Wieshammer, G, Istenic, B 2003Microtome sectioning causes artifacts in rhizobox experimentsPlant Soil256455462CrossRefGoogle Scholar
  13. Föhse, D, Claassen, N, Jungk, A 1991Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation–anion balance for phosphorus influx in seven plant speciesPlant Soil132261272Google Scholar
  14. Gahoonia, T S, Care, D, Nielsen, N E 1997Root hairs and phosphorus acquisition of wheat and barley cultivarsPlant Soil191181188CrossRefGoogle Scholar
  15. Gahoonia, T S, Nielsen, N E 1992Control of pH at the root–soil interfacePlant Soil1404954CrossRefGoogle Scholar
  16. Gahoonia, T S, Nielsen, N E 1996Variation in acquisition of soil phosphorus among wheat and barley genotypesPlant Soil178223230CrossRefGoogle Scholar
  17. Gardner, W K, Parbery, D G, Barber, D A 1982The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interfacePlant Soil681932CrossRefGoogle Scholar
  18. Gilbert, G A, Knight, J D, Vance, C P, Allan, D L 1999Acid phosphatase activity in phosphorus-deficient white lupin rootsPlant Cell Environ.22801810CrossRefGoogle Scholar
  19. Goldstein, A H, Bartlein, D A, McDaniel, R G 1988Phosphate starvation inducible metabolism in Lycopersicon esculentum. I. Excretion of acid phosphatase by tomato plants and suspension-cultured cellsPlant Physiol.87711715PubMedCrossRefGoogle Scholar
  20. Hedley, M J, White, R E, Nye, P H 1982Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. III. Changes in L value, soil phosphate fractions and phosphatase activityNew Phytol.914556CrossRefGoogle Scholar
  21. Helal, H M 1990Varietal differences in root phosphatase activity as related to the utilization of organic phosphatesPlant Soil123161163CrossRefGoogle Scholar
  22. Hendriks, L, Claassen, N, Jungk, A 1981Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und RapsZ. Pflanz. Bodenkunde144486499Google Scholar
  23. Hinsinger, P 1998How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphereAdv. Agron.64225265CrossRefGoogle Scholar
  24. Hinsinger, P, Gilkes, R J 1995Root-induced dissolution of phosphate rock in the rhizosphere of lupins grown in alkaline soilAust. J. Soil Res.33477489CrossRefGoogle Scholar
  25. Hinsinger, P, Gilkes, R J 1996Mobilisation of phosphate from phosphate rock and alumina-sorbed phosphate by the roots of ryegrass and clover as related to rhizosphere pHEur. J. Soil Sci.47533544CrossRefGoogle Scholar
  26. Hinsinger, P, Plassard, C, Tang, C, Jaillard, B 2003Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a reviewPlant Soil2484359CrossRefGoogle Scholar
  27. Hocking, P J, Keerthisinghe, G, Smith, F W, Randall, P J 1997Comparison of the ability of different crop species to access poorly-available soil phosphorusAndo, TFujita, KMae, TMatsumoto, HMori, SSekiya, J eds. Plant Nutrition for Sustainable Food Production, EnvironmentKluwer Academic PublishersDordrecht305308Google Scholar
  28. Johnson, J F, Vance, C P, Allan, D L 1996Phosphorus deficiency in Lupinus albus: altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylasePlant Physiol.1113141CrossRefGoogle Scholar
  29. Jones, D L 1998Organic acids in the rhizosphere: a critical reviewPlant Soil2052544CrossRefGoogle Scholar
  30. Jones, D L, Kochian, L V 1996Aluminium-organic acid interactions in acid soils. I. Effect of root-derived organic acids on the kinetics of Al dissolutionPlant Soil182221228Google Scholar
  31. Jones, D L, Prabowo, A M, Kochian, L V 1996Kinetics of malate transport and decomposition in acid soils and isolated bacterial populations: The effect of microorganisms on root exudation of malate under Al stressPlant Soil282239247Google Scholar
  32. Jungk, A, Seeling, B, Gerke, J 1993Mobilisation of different phosphate fractions in the rhizospherePlant Soil155/156293296CrossRefGoogle Scholar
  33. Keerthisinghe, G, Hocking, P J, Ryan, P R, Delhaize, E 1998Effect of phosphorus supply on the formation of proteoid roots of white lupin (Lupinus albus L.)Plant Cell Environ.21467478CrossRefGoogle Scholar
  34. Lambers, H, Chapin, FS,III, Pons, T L 1998Plant Physiological EcologySpringer-VerlagNew YorkGoogle Scholar
  35. Li, M, Shinano, T, Tadano, T 1997Distribution of exudates of lupin roots in the rhizosphere under phosphorus-deficient conditionsSoil Sci. Plant Nutr.43237245Google Scholar
  36. Lynch, J P, Brown, K M 2001Topsoil foraging – an architectural adaptation of plants to low phosphorus availabilityPlant Soil237225237CrossRefGoogle Scholar
  37. Marschner, H 1995Mineral Nutrition of Higher Plants2Academic PressLondonGoogle Scholar
  38. Marschner, H, Römheld, V, Horst, W J, Martin, P 1986Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plantZ. Pflanz. Bodenkunde149441456Google Scholar
  39. McLay, C D A, Barton, L, Tang, C 1997Acidification potential of ten grain legume species grown in nutrient solutionAust. J. Agric. Res.4810251032CrossRefGoogle Scholar
  40. Mudge, S R, Smith, F W, Richardson, A E 2003Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P sourcePlant Sci.165871878CrossRefGoogle Scholar
  41. Murphy, J, Riley, J P 1962A modified single solution method for the determination of phosphorus in natural watersAnal. Chem. Acta.273106CrossRefGoogle Scholar
  42. Neumann, G, Massonneau, A, Martinoia, E, Römheld, V 1999Physiological adaptations to phosphorus deficiency during proteoid root development in white lupinPlanta208373382CrossRefGoogle Scholar
  43. Neumann, G, Römheld, V 1999Root excretion of carboxylic acids and protons in phosphorus-deficient plantsPlant Soil211121130CrossRefGoogle Scholar
  44. Nuruzzaman, M, Lambers, H, Bolland, M D A, Veneklaas, E J 2005Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western AustraliaPlant Soil271175187CrossRefGoogle Scholar
  45. Olsen S R, Cole C V, Watanabe F S, Dean L A, 1954 Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular No. 939Google Scholar
  46. Payne, R, Murry, D, Harding, S, Baird, D, Soutar, D, Lane, P 2002GenStat® for WindowsTMVSN InternationalOxfordGoogle Scholar
  47. Plassard, C, Meslem, M, Souche, G, Jaillard, B 1999Localization and quantification of net fluxes of H+ along maize roots by combined use of pH-indicator dye videodensitometry and H+-selective microelectrodesPlant Soil2112939CrossRefGoogle Scholar
  48. Rayment, G E, Higginson, F R 1992Australian Laboratory Handbook of Soil and Water Chemical MethodsInkata PressMelbourneGoogle Scholar
  49. Ryan, P R, Delhaize, E, Jones, D L 2001Function and mechanism of organic anion exudation from plantsAnn. Rev. Plant Physiol. Plant Mol. Biol.52527560CrossRefGoogle Scholar
  50. Schachtman, D P, Reid, R J, Ayling, S M 1998Phosphorus uptake by plants: from soil to cellPlant Physiol.116447453CrossRefPubMedGoogle Scholar
  51. Shane, M W, Vos, M, Roock, S, Lambers, H 2003Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root systemPlant Cell Environ.26265273CrossRefGoogle Scholar
  52. Silberbush, M, Barber, S A 1984Phosphorus and potassium uptake of field-grown soybean cultivars predicted by a simulation modelSoil Sci. Soc. Am. J.48592596CrossRefGoogle Scholar
  53. Silberbush, M, Shomer-Ilan, A, Waisel, Y 1981Root surface phosphatase activity in ecotypes of Aegilops peregrine Physiol. Plantarum53501504CrossRefGoogle Scholar
  54. Tabatabai, M A, Bremner, J M 1969Use of p-nitrophenyl phosphate for assay of soil phosphatase activitySoil Biol. Biochem.1301307CrossRefGoogle Scholar
  55. Tadano, T, Sakai, H 1991Secretion of acid phosphatase by the roots of several crop species under phosphorus deficient conditionsSoil Sci. Plant Nutr.37129140Google Scholar
  56. Tang, C, McLay, C D A, Barton, L 1997A comparison of proton excretion of twelve pasture legumes grown in nutrient solutionAust. J. Exp. Agric.37563570CrossRefGoogle Scholar
  57. Tarafdar, J C, Jungk, A 1987Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorusBiol. Fertil. Soils3199204CrossRefGoogle Scholar
  58. Tiessen, H, Moir, J O 1993Characterisation of available P by sequential extractionCarter, MR eds. Soil Sampling and Methods of AnalysisLewis PublishersBoca Raton104107Google Scholar
  59. Vance, C P, Uhde-Stone, C, Allan, D L 2003Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resourceNew Phytol.157423447CrossRefGoogle Scholar
  60. Veneklaas, E J, Stevens, J, Cawthray, G R, Turner, S, Grigg, A M, Lambers, H 2003Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptakePlant Soil248187197CrossRefGoogle Scholar
  61. Wasaki, J, Yamamura, T, Shinano, T, Osaki, M 2003Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiencyPlant Soil248129136CrossRefGoogle Scholar
  62. Watt, M, Evans, J R 2003Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root developmentPlant Soil248271283CrossRefGoogle Scholar
  63. Wouterlood, M, Cawthray, G R, Scanlon, T T, Lambers, H, Veneklaas, E J 2004Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plantsNew Phytol.162745753CrossRefGoogle Scholar
  64. Yadav, R S, Tarafdar, J C 2001Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plantsBiol. Fertil. Soils34140143CrossRefGoogle Scholar
  65. Yang, J E, Jacobsen, J S 1990Soil inorganic phosphorus fractions and their uptake relationships in calcareous soilsSoil Sci. Soc. Am. J.5416661669CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mohammad Nuruzzaman
    • 1
  • Hans Lambers
    • 1
  • Michael D. A. Bolland
    • 1
    • 2
  • Erik J. Veneklaas
    • 1
    Email author
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.Department of AgricultureBunburyAustralia

Personalised recommendations