Plant and Soil

, Volume 281, Issue 1–2, pp 87–96 | Cite as

Using the Selective Ion Exchange Resin Extraction and XANES Methods to Evaluate the Effect of Compost Amendments on Soil Chromium(VI) Phytotoxicity

  • Dar-Yuan Lee
  • Yu-Na Shih
  • Hsiu-Ching Zheng
  • Chiou-Pin Chen
  • Kai-Wei Juang
  • Jyh-Fu Lee
  • Lo Tsui


The Cu-saturated selective ion exchange resin (DOWEX M4195) extraction method was used to investigate the effects of two amendments, 5 and 15% organic matter in the form of hog-dung compost (HC) or cattle-dung compost (CC), on Cr(VI) bioavailability in three soils spiked with various levels of Cr(VI). The results showed that addition of composts could decrease the amounts of resin-extractable Cr(VI) in Cr(VI)-spiked soils, and the CC amendment decreased resin-extractable Cr(VI) more than the HC amendment. The X-ray Absorption Near-edge Structure spectroscopy (XANES) method was used to examine the distribution of Cr(III) and Cr(VI) species in Cr(VI)-spiked soils that were affected by compost amendments, and to elucidate the mechanisms for the decrease of resin-extractable Cr(VI) due to the application of composts. The XANES results suggested that the decrease in the amounts of resin-extractable Cr(VI) after compost addition was mainly due to the reduction of Cr(VI) to Cr(III). The amounts of soil resin-extractable Cr(VI) were also correlated with wheat seedling growth in order to evaluate the effect of compost amendments on decreasing the phytotoxicity of soil Cr(VI). The results showed that there was a sigmoidal relationship between soil resin-extractable Cr(VI) and the plant height of wheat seedlings and the obtained effective concentrations of resin-extractable Cr(VI) resulting in 10 and 50% growth inhibition (EC10 and EC50) were 76 and 191 mg kg−1 respectively. The above results suggested that the resin extraction method was a useful tool for assessing Cr(VI) phytotoxicity and that addition of composts would enhance Cr(VI) reduction to Cr(III) in soils and thus relieve Cr(VI) phytotoxicity.


chromium heavy metal ion exchange resin phytotoxicity XANES 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajt, S, Clark, S B, Sutton, S R, Rivers, M L, Smith, J V 1993Synchrotron X-ray microprobe determination of chromate content using X-ray absorption near-edge structureAnal. Chem.6518001804CrossRefGoogle Scholar
  2. Bartlett, R J, James, B R 1988Mobility and bioavailability of chromium in soilsNriagu, J ONieboer, E eds. Chromium in the Natural and Human EnvironmentsJohn Wiley & SonsNew York, USA267304Google Scholar
  3. Barlett, R J, Kimble, J M 1976Behavior of chromium in soil: I Trivalent formJ. Environ. Qual.5383386Google Scholar
  4. Bolan, N S, Adriano, D C, Natesan, R, Koo, B J 2003effect of organic amendments on the reduction and phytoavailability of chromate in mineral soilJ. Environ. Qual.32120128PubMedCrossRefGoogle Scholar
  5. Calas, G, Bassett, W A, Petiau, J, Steinberg, M, Tchoubar, D, Zarka, A 1984Some mineralogical applications of synchrotron radiationPhys. Chem. Miner.111736CrossRefGoogle Scholar
  6. Carey, P L, McLaren, R G, Cameron, K C, Sedcole, J R 1996Leaching of copper, chromium and arsenic through some free-draining New Zealand soilsAust. J. Soil Res.34583597CrossRefGoogle Scholar
  7. Chung, J, Zasoski, R J, Lim, S 1994Kinetics of chromium (III) oxidation by various manganese oxidesKorean J. Agric. Chem. Biotechnol37414420Google Scholar
  8. Duncan, D B 1955Multiple range and multiple F-testsBiometrics11142Google Scholar
  9. Fendorf, S E, Matthew, J E, Grossel, P, Sparks, D L 1997Arsenate and chromate retention mechanism on goethite. I. Surface structureEnviron. Sci. Technol.31315320CrossRefGoogle Scholar
  10. Gee G W and Bauder J W 1986 Particle size analysis. In Methods of Soil Analysis, part 1. 2nd ed. Ed. A. Klute. pp. 381–411. Agron. Monogr. 9. ASA and SSSA, Madison, WIGoogle Scholar
  11. Haanstra, L, Doelman, P, Oude Voshaar, J H 1985The use of sigmoidal dose response curves in soil ecotoxicological researchPlant Soil84293297CrossRefGoogle Scholar
  12. Higgins, T E, Halloran, A R, Dobbins, M E, Pittignano, A J 1998In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residueJ. Air Waste Manage. Assoc.4811001106Google Scholar
  13. James, B R, Bartlett, R J 1983Behavior of chromium in soils. VII. Adsorption and reduction of hexavalent formsJ. Environ. Qual.12177181CrossRefGoogle Scholar
  14. James, B P, Petura, J C, Vitale, R J, Mussoline, G R 1995Hexavalent chromium extraction from soils: a comparison of five methodsEnviron. Sci. Technol.2923772380Google Scholar
  15. Kendig, M W, Davenport, A J, Isaacs, H S 1993The mechanism of corrosion inhibition by chromate conversion coating from X-ray absorption near edge spectroscopy (XANES)Corros. Sci.344149CrossRefGoogle Scholar
  16. Lee, T T 1983The accumulation, transformation, and utilization of phosphorus fertilizer applied in different soils under upland conditionJ. Agric. Res. China327284Google Scholar
  17. Lee, D Y, Huang, J C, Juang, K W, Tsui, L 2005Assessment of phytotoxicity of chromium in flooded soils using embedded selective ion exchange resin methodPlant Soil27797105CrossRefGoogle Scholar
  18. Losi, M E, Amrhein, C, Frankenberger, W T,Jr 1994Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soilsJ. Environ. Qual.2311411150Google Scholar
  19. Mehra, O P, Jackson, M L 1960Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonateClays Clay Miner.7317327Google Scholar
  20. Mulvaney R L, 1996 Nitrogen-inorganic forms. In Methods of Soil Analysis: Part 3-Chemical Methods. Ed. D L Sparks. pp. 1123–1184. SSSA Book ser. No. 5. SSSA, ASA, Madison, WIGoogle Scholar
  21. Nelson, D W, Sommers, L E 1975A rapid and accurate procedure for estimation of organic carbon in soilsProc. Indiana Acad. Sci.84456462Google Scholar
  22. Patterson, R R, Fendorf, S, Fendorf, M 1997Reduction of hexavalent chromium by amorphous iron sulfideEnviron. Sci. Technol.3120392044CrossRefGoogle Scholar
  23. Proctor, D M, Shay, E C, Scott, P K 1997Health-based soil action levels for trivalent and hexavalent chromium: a comparison with state and federal standardsJ. Soil Contamin.6595648Google Scholar
  24. Risser J A and Baker D E 1990 Testing soils for toxic metals. In Soil Testing and Plant Analysis, 3rd ed. Ed. R R Westerman. pp. 275–298. Soil Sci Soc Am., Madison, WI, USAGoogle Scholar
  25. Soil Survey Staff 1992 Keys to Soil Taxonomy. 5th ed. SMSS Technical Monograph No. 436. Pocahontas Press Inc., Blacksburg, VirginiaGoogle Scholar
  26. Stewart, M A, Jardine, P M, Brandt, C C, Barnett, M O, Fendorf, S E, McKay, L D, Mehlhorn, T L, Paui, K 2003Effects of contaminant concentration, aging, and soil properties on the bioaccessibility of Cr(III) and Cr(VI) in soilSoil Sediment Contamin.12121Google Scholar
  27. Szulczewski, M D, Helmke, P A, Bleam, W F 1997Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soilsEnviron. Sci. Technol.3129542959CrossRefGoogle Scholar
  28. Tokunaga, T K, Wan, J, Firestone, M K, Hazen, T C, Olson, K R, Herman, D J, Sutton, S R, Lanzirotti, A 2003In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendmentJ. Environ. Qual.3216411649PubMedGoogle Scholar
  29. Yu, P F, Juang, K W, Lee, D Y 2004Assessment of the phytotoxicity of chromium in soils using the selective ion exchange resin extraction methodPlant Soil258333340CrossRefGoogle Scholar
  30. Zachara, J M, Ainsworth, C C, Cowan, C E, Resch, C T 1989Adsorption of chromate by subsurface soil horizonsSoil Sci. Soc. Am. J.53418428CrossRefGoogle Scholar
  31. Zhao, D, SenGupt, A K, Stewart, L 1998Selective removal of Cr(VI) oxyanions with a new anion exchangerInd. Eng. Chem. Res.3743834387CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Dar-Yuan Lee
    • 1
  • Yu-Na Shih
    • 1
  • Hsiu-Ching Zheng
    • 1
  • Chiou-Pin Chen
    • 1
  • Kai-Wei Juang
    • 2
  • Jyh-Fu Lee
    • 3
  • Lo Tsui
    • 1
  1. 1.Graduate Institute of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Post-Modern AgricultureMingDao UniversityPitou, ChanghuaTaiwan
  3. 3.National Synchrotron Radiation Research CenterHsinchuTaiwan

Personalised recommendations