Plant and Soil

, Volume 281, Issue 1–2, pp 15–24

Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter

  • Douglas L. Godbold
  • Marcel R. Hoosbeek
  • Martin Lukac
  • M. Francesca Cotrufo
  • Ivan A. Janssens
  • Reinhart Ceulemans
  • Andrea Polle
  • Eef J. Velthorst
  • Giuseppe Scarascia-Mugnozza
  • Paolo De  Angelis
  • Franco Miglietta
  • Alessandro Peressotti
Article

Abstract

The atmospheric concentration of CO2 is predicted to reach double current levels by 2075. Detritus from aboveground and belowground plant parts constitutes the primary source of C for soil organic matter (SOM), and accumulation of SOM in forests may provide a significant mechanism to mitigate increasing atmospheric CO2 concentrations. In a poplar (three species) plantation exposed to ambient (380 ppm) and elevated (580 ppm) atmospheric CO2 concentrations using a Free Air Carbon Dioxide Enrichment (FACE) system, the relative importance of leaf litter decomposition, fine root and fungal turnover for C incorporation into SOM was investigated. A technique using cores of soil in which a C4 crop has been grown (δ13C −18.1‰) inserted into the plantation and detritus from C3 trees (δ13C −27 to −30‰) was used to distinguish between old (native soil) and new (tree derived) soil C. In-growth cores using a fine mesh (39 μm) to prevent in-growth of roots, but allow in-growth of fungal hyphae were used to assess contribution of fine roots and the mycorrhizal external mycelium to soil C during a period of three growing seasons (1999–2001). Across all species and treatments, the mycorrhizal external mycelium was the dominant pathway (62%) through which carbon entered the SOM pool, exceeding the input via leaf litter and fine root turnover. The input via the mycorrhizal external mycelium was not influenced by elevated CO2, but elevated atmospheric CO2 enhanced soil C inputs via fine root turnover. The turnover of the mycorrhizal external mycelium may be a fundamental mechanism for the transfer of root-derived C to SOM.

Keywords

δ13C abundance C sequestration EuroFACE mycorrhiza poplar SOM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J D, Melillo, J M, McClaugherty, C A 1990Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystemsCan. J. Bot.6822012208Google Scholar
  2. Agerer R 1987–1996 Colour Atlas of Ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger, Schwäbisch GmündGoogle Scholar
  3. Agerer, R 2001Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importanceMycorrhiza11107114CrossRefGoogle Scholar
  4. Balesdent, J, Wagner, G H, Mariotti, A 1988Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundanceSoil Sci. Soc. Am. J.52118124CrossRefGoogle Scholar
  5. Balesdent, J, Mariotti, A 1996

    Measuring of soil organic matter turnover using 13C abundance

    Boutton, TWYamasaki, S eds. Mass Spectroscopy of SoilsMarcel DekkerNew York83111
    Google Scholar
  6. Binkley, D, Kaye, J, Barry, M, Ryan, M G 2004First rotation changes in soil carbon and nitrogen in a eucalyptus plantation in HawaiiSoil Sci Soc Am J.6817131719CrossRefGoogle Scholar
  7. Calfapietra, C, Gielen, B, Sabatti, M, Angelis, P, Scarascia-Mugnozza, G, Ceulemans, R 2001Growth performance of Populus exposed to “Free Air Carbon dioxide Enrichment” during the first growing season in the POPFACE experimentAnn. For. Sc.58819828CrossRefGoogle Scholar
  8. Ceulemans, R, Janssens, I A, Jach, M E 1999Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studiesAnn. Bot.84577590CrossRefGoogle Scholar
  9. Cotrufo, M F, Angelis, P, Polle, A 2005Leaf litter production and decomposition in a poplar short rotation coppice exposed to free air CO2 enrichment (POPFACE)Global Change Biol.11971982CrossRefGoogle Scholar
  10. Coutts, M P, Nicoll, B C 1990Growth and survival of shoots, roots and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after plantingCan. J. For. Res.20861868Google Scholar
  11. Dahlman, R C, Kucera, C L 1965Root productivity and turnover in native prairieEcology468489CrossRefGoogle Scholar
  12. Galdo, I, Six, J, Peressotti, A, Cotrufo, M F 2003Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopesGlobal Change Biol.912041213CrossRefGoogle Scholar
  13. Doyle, J J, Doyle, J L 1987A rapid DNA isolation from small amount of fresh leaf tissuePhytochem. Bull.191115Google Scholar
  14. Ekblad, A, Wallander, H, Näsholm, T 1998Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizaeNew Phytol.138143149CrossRefGoogle Scholar
  15. Fitter, A H, Heinemeyer, A, Husband, R, Olsen, E, Ridgway, K P, Staddon, P L 2004Global environmental change and the biology of arbuscular mycorrhizas: gaps and challengesCan. J. Bot.8211331139CrossRefGoogle Scholar
  16. Fogel, R 1980Mycorrhizae and nutrient cycling in natural forest ecosystemsNew Phytol.86199212CrossRefGoogle Scholar
  17. Fogel, R, Hunt, G 1979Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnoverCan. J. For. Res.9245256Google Scholar
  18. Fogel, R, Hunt, G 1983Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystemCan. J. For. Res.13219232Google Scholar
  19. Frey, S D, Six, J, Elliott, E T 2003Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interfaceSoil Biol. Biochem.3510011004CrossRefGoogle Scholar
  20. Friese, C F, Allen, M F 1991The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architectureMycologia83409418Google Scholar
  21. Gill, R A, Jackson, R B 2000Global patterns of root turnover for terrestrial ecosystemsNew Phytol.1471331CrossRefGoogle Scholar
  22. Godbold, D L, Berntson, G M, Bazzaz, F A 1997Growth and mycorrhizal colonisation of 3 North American tree species under elevated atmospheric CO2New Phytol.137433440CrossRefGoogle Scholar
  23. Godbold, D L, Fritz, H W, Jentschke, G, Meesenburg, H, Rademacher, P 2003Root turnover of Norway spruce (Picea abies) is affected by soil acidity and contributes strongly to forest floor litterTree Physiol.23915921PubMedGoogle Scholar
  24. Hendrey, G R, Ellsworth, D S, Lewin, K F, Nagy, J 1999A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2Global Change Biol.5293309CrossRefGoogle Scholar
  25. Högberg, M N, Högberg, P 2002Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soilNew Phytol.154791795CrossRefGoogle Scholar
  26. Högberg, P, Nordgren, A, Buchmann, N, Taylor, A F S, Ekblad, A, Högberg, M N, Nyberg, G, Ottosson-Löfvenius, M, Read, D J 2001Large-scale forest girdling shows that current photosynthesis drives soil respirationNature411789792CrossRefPubMedGoogle Scholar
  27. Hoosbeek, M R, Lukac, M, Dam, D, Godbold, D L, Velthorst, E J, Biondi, F A, Peressotti, A, Cotrufo, M F, Angelis, P, Scarascia-Mugnozza, G 2004More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE)Global Biogeochem. Cycl.18 GB1040CrossRefGoogle Scholar
  28. Hungate, B A, Jackson, R B, Field, C B, Chapin, F S,III 1996Detecting changes in soil carbon in CO2 enrichment experimentsPlant Soil187135145CrossRefGoogle Scholar
  29. Kubiske M E and Godbold D L 2001 Influence of CO2 on the growth and function of roots and root systems. In The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems. Eds. D F Karnosky, R Ceulemans, G E Scarascia-Mugnozza and J L Innes. pp. 147–191. Report No. 3 of the IUFRO task force on environmental change. CABI Publishing, Wallingford, UKGoogle Scholar
  30. Leake, J, Johnson, D, Donnelly, D, Muckle, G, Boddy, L, Read, D 2004Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning CanJ. Bot.8210161045CrossRefGoogle Scholar
  31. Loya, W M, Pregitzer, K S, Karberg, N J, King, J S, Giardina, C P 2003Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levelsNature425705707CrossRefPubMedGoogle Scholar
  32. Lukac, M, Godbold, D L 2001A modification of the ingrowth-core method to determine root production in fast growing tree speciesJ. Plant Nutr. Soil Sci.164613614CrossRefGoogle Scholar
  33. Lukac, M, Calfapietra, C, Godbold, D L 2003Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE)Global Change Biol.9838848CrossRefGoogle Scholar
  34. McGonigle, T P, Miller, M H, Evans, D G, Fairchild, G L, Swan, J A 1990A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungiNew Phytol.115495501CrossRefGoogle Scholar
  35. Miglietta, F, Peressotti, A, Vaccari, F P, Zaldei, A, Angelis, P, Scarascia-Mugnozza, G 2001Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation systemNew Phytol.150465476CrossRefGoogle Scholar
  36. Muzzarelli, R A A 1977ChitinPergamon PressOxford, UKGoogle Scholar
  37. Nilsson, L O, Wallander, H 2003Production of external mycelium by ectomycorrhizal fungi in a norway spruce forest was reduced in response to nitrogen fertilisationNew Phytol.158409416CrossRefGoogle Scholar
  38. Norby, R J, Hanson, P J, O’Neill, E G, Tschaplinski, T J, Weltzin, J F, Hansen, R A, Cheng, W, Wullschleger, S D, Gunderson, C A, Edwards, A C, Johnson, D W 2002Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storageEcol. Appl.1212611266Google Scholar
  39. Phillips, D L, Gregg, J W 2001Uncertainty in source partitioning using stable isotopesOecologia127171179CrossRefGoogle Scholar
  40. Rillig, M C, Wright, S F, Nichols, K A, Schmidt, W F, Torn, M S 2001Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soilsPlant Soil233167177CrossRefGoogle Scholar
  41. Schlesinger W 1997 Biogeochemistry: an Analysis of Global Change. Academic Press, 2nd edition.Google Scholar
  42. Schlesinger, W H, Lichter, J 2001Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2Nature411466469CrossRefPubMedGoogle Scholar
  43. Staddon, P L, Ramsey, C B, Ostle, N, Ineson, P, Fitter, A H 2003Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14CScience30011381140CrossRefPubMedGoogle Scholar
  44. Steele, S J, Gower, S T, Vogel, J G, Norman, J M 1997Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, CanadaTree Physiol.17577587PubMedGoogle Scholar
  45. Treseder, K K, Allen, M F 2000Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen depositionNew Phytol.147189200CrossRefGoogle Scholar
  46. Van Lagen B 1996 Soil analyses. In Manual for Soil and Water Analyses. Eds. P Buurman, B Van Lagen and E Velthorst. Blackhuys Publishers, LeidenGoogle Scholar
  47. Vogt, K A, Grier, C C, Vogt, D J 1986Production, turnover, and nutrient dynamics of above- and belowground detritus of world forestsAdv. Ecol. Res.15303377CrossRefGoogle Scholar
  48. Wallander, H, Nilsson, L O, Hagerberg, D, Bååth, E 2001Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the fieldNew Phytol.151753760CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Douglas L. Godbold
    • 1
  • Marcel R. Hoosbeek
    • 2
  • Martin Lukac
    • 1
  • M. Francesca Cotrufo
    • 3
  • Ivan A. Janssens
    • 4
  • Reinhart Ceulemans
    • 4
  • Andrea Polle
    • 5
  • Eef J. Velthorst
    • 2
  • Giuseppe Scarascia-Mugnozza
    • 6
  • Paolo De  Angelis
    • 6
  • Franco Miglietta
    • 7
  • Alessandro Peressotti
    • 8
  1. 1.School of Agricultural and Forest SciencesUniversity of WalesBangor, GwyneddUK
  2. 2.Laboratory of Soil Science and Geology, Department of Environmental SciencesWageningen UniversityWageningenThe Netherlands
  3. 3.Dipartimento di Scienze AmbientaliSeconda Università degli Studi di NapoliCasertaItaly
  4. 4.Department of BiologyUniversity of Antwerpen (UA)WilrijkBelgium
  5. 5.Institut für ForstbotanikUniversität GöttingenGöttingenGermany
  6. 6.Di.S.A.F.Ri., Università degli Studi della TusciaViterboItaly
  7. 7.Insitute of BiometeorologyIBIMET-CNRFirenzeItaly
  8. 8.Dipartimento Produzione Vegetale eTechnologie AmbientaliUniversità di Udine 208UdineItaly

Personalised recommendations