Plant and Soil

, Volume 276, Issue 1–2, pp 115–132 | Cite as

Goethite Dissolution in the Presence of Phytosiderophores: Rates, Mechanisms, and the Synergistic Effect of Oxalate

  • P.U. Reichard
  • S.M. KraemerEmail author
  • S.W. Frazier
  • R. Kretzschmar


The purpose of this study was the elucidation of the chemical mechanism of an important process in iron acquisition by graminaceous plants: the dissolution of iron oxides in the presence of phytosiderophores. We were particularly interested in the effects of diurnal root exudation of phytosiderophores and of the presence of other organic ligands in the rhizosphere of graminaceous plants on the dissolution mechanism.

Phytosiderophores of the type 2′-deoxymugineic acid (DMA) were purified from the root exudates of wheat plants (Triticum aestivum L. cv. Tamaro). DMA-promoted dissolution of goethite under steady-state and non-steady-state conditions and its dependence on pH, adsorbed DMA concentration, and the presence of the organic ligand oxalate were studied. We show that dissolution of goethite by phytosiderophores follows a surface controlled ligand promoted dissolution mechanism. We also found that oxalate, an organic ligand commonly found in rhizosphere soils, has a synergistic effect on the steady-state dissolution of goethite by DMA. Under non-steady-state addition of the phytosiderophore, mimicking the diurnal exudation pattern of phytosiderophore release, a fast dissolution of iron is triggered in the presence of oxalate.

To investigate the efficiency of these mechanisms in plant iron acquisition, wheat plants were grown on a substrate amended with goethite as only iron source. The chlorophyll status of these plants was similar to iron-fertilized plants and significantly higher than in plants grown in iron free nutrient solutions. This demonstrates that wheat can efficiently mobilize iron, even from well crystalline goethite that is usually considered unavailable for plant nutrition.

Key words

deoxymugineic acid dissolution mechanism iron oxide strategy II Triticum aestivum weathering kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, S, Akiha, F, Kamei, S, Kawai, S 2004Diurnal variations in absorption and translocation of a ferrated phytosiderophore in barley as affected by iron deficiencyJ. Soil Sci. Plant Nutr.50457461Google Scholar
  2. Awad, F, Römheld, V, Marschner, H 1994Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plantsPlant and Soil165213218CrossRefGoogle Scholar
  3. Bertrand, I, Hinsinger, P 2000Dissolution of iron oxyhydroxide in the rhizosphere of various crop speciesJ. Plant Nutr.2315591577Google Scholar
  4. Cheah, S F, Kraemer, S M, Cervini-Silva, J, Sposito, G 2003Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of ironChem. Geol.1986375CrossRefGoogle Scholar
  5. Cornell, R M, Schwertmann, U 2003The Iron OxidesWiley-VCHWeinheimGoogle Scholar
  6. Dakora, F D, Phillips, D A 2002Root exudates as mediators of mineral acquisition in low-nutrient environmentsPlant and Soil2453547CrossRefGoogle Scholar
  7. Darrah, P R 1991Models of the rhizosphere. 1. Microbial-population dynamics around a root releasing soluble and insoluble carbonPlant and Soil133187199CrossRefGoogle Scholar
  8. Eick, M J, Peak, J D, Brady, W D 1999The effect of oxyanions on the oxalate-promoted dissolution of goethiteSoil Sci. Soc. Am. J.6311331141CrossRefGoogle Scholar
  9. Fan, T W M, Lane, A N, Pedler, J, Crowley, D, Higashi, R M 1997Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography mass spectrometryAnal. Biochem.2515768CrossRefPubMedGoogle Scholar
  10. Filius, J D, Hiemstra, T, Riemsdijk, W H 1997Adsorption of small weak organic acids on goethite: Modeling of mechanismsJ. Colloid Interf. Sci.195368380Google Scholar
  11. Furrer, G, Stumm, W 1986The coordination chemistry of weathering: 1 Dissolution kinetics of δ-Al2O3 and BeOGeochim. Cosmochim. Acta5018471860CrossRefGoogle Scholar
  12. Gadd G M 2000 Heterotrophic solubilization of metal-bearing minerals by fungi. In Environmental Mineralogy. Eds. J D Cotter-Howells, D L S Campbell, E Valsami-Jones and M Batchelder. pp 57–75. The Mineralogical Society, LondonGoogle Scholar
  13. Gollany, H T, Schumacher, T E, Rue, R R, Liu, S-Y 1993A carbon dioxide microelectrode for in situ pCO2 measurementMicrochem. J.484249CrossRefGoogle Scholar
  14. Graustein, W C, Cromack, K 1977Calcium oxalate: Occurrence in soils and effect on nutrient and geochemical cyclesScience19812521254PubMedGoogle Scholar
  15. Hagström, J, James, W M, Skene, K R 2001A comparison of structure, development and function in cluster roots of Lupinus albus L. under phosphate and iron stressPlant and Soil2328190CrossRefGoogle Scholar
  16. Higuchi, K, Suzuki, K, Nakanishi, H, Yamaguchi, H, Nishizawa, N K, Mori, S 1999Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophoresPlant Physiol.119471479CrossRefPubMedGoogle Scholar
  17. Higuchi, K, Watanabe, S, Takahashi, M, Kawasaki, S, Nakanishi, H, Nishizawa, N K, Mori, S 2001Nicotianamine synthase gene expression doffers in barley and rice under Fe-deficient conditionsPlant J.25159167CrossRefPubMedGoogle Scholar
  18. Hiradate, S, Inoue, K 1998Dissolution of iron from iron (hydr)oxides by mugineic acidSoil Sci. Plant Nutr.44305313Google Scholar
  19. Inoue, K, Hiradate, S, Takagi, S 1993Interaction of mugineic acid with synthetically produced iron-oxidesSoil Sci. Soc. Am. J.5712541260Google Scholar
  20. Jones, D L 1998Organic acids in the rhizosphere – a critical reviewPlant and Soil2052544CrossRefGoogle Scholar
  21. Jones, D L, Brassington, D S 1998Sorption of organic acids in acid soils and its implications in the rhizosphereEurop. J. Soil Sci.49447455Google Scholar
  22. Jones, D L, Darra, P R, Kochian, L V 1996Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron upakePlant and Soil1805766CrossRefGoogle Scholar
  23. Kraemer, S M 2004Iron oxide dissolution and solubility in the presence of siderophoresAquat. Sci.66318Google Scholar
  24. Kraemer, S M, Cheah, S F, Zapf, R, Raymond, K N, Sposito, G 1999Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethiteGeochim. Cosmochim. Acta6330033008CrossRefGoogle Scholar
  25. Large, E C 1954Growth stages in cerealsPlant Pathol.3128129Google Scholar
  26. Lindsay, W L 1979Chemical Equilibria in SoilsWiley InterscienceNew YorkGoogle Scholar
  27. Ma, J F, Nomoto, K 1996Effective regulation of iron acquisition in graminaceous plants The role of mugineic acids as phytosiderophoresPhysiol. Plant.97609617CrossRefGoogle Scholar
  28. Ma, J F, Shinada, T, Matsuda, C, Nomoto, K 1995Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cyclingJ. Biol. Chem.2701654916554PubMedGoogle Scholar
  29. Ma, JF, Ueno, H, Ueno, D, Rombolà, A D, Iwashita, T 2003Characterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra Plant and Soil256131137CrossRefGoogle Scholar
  30. Marschner, H 1995Mineral Nutrition of Higher Plants2ndAcademic PressLondonGoogle Scholar
  31. Marschner, H, Römheld, V, Kissel, M 1986Different strategies in higher-plants in mobilization and uptake of ironJ. Plant Nutr.9695713Google Scholar
  32. Marschner, H, Römheld, V, Kissel, M 1987Localization of phytosiderophore release and of iron uptake along intact barley rootsPhys. Plant.71157162Google Scholar
  33. Martel, A E, Smith, R M, Motekaitis, R J 2001NIST Critically selected Stability Constants of Metal Complexes. NIST Standard reference database 46GaithersburgNISTGoogle Scholar
  34. Matar, A, Torrent, J, Ryan, J 1992Soil and fertilizer phosphorous and crop responses in the dryland mediterranean zoneAdv. Soil Sci.1881146Google Scholar
  35. Moran, R 1982Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamidePlant Physiol.6913761381PubMedGoogle Scholar
  36. Mori, S 1994Mechanism of iron acquisition by graminaceous (strategy II) plantsManthey, J ACrowley, D ELuster, D G eds. Biochemistry of Metal Micronutrients in the RhizosphereLewisBoca Raton225249Google Scholar
  37. Murakami T, Ise K, Hayakawa M, Kamei S, Takagi S, 1989 Stabilities of Metal Complexes of Mugineic acids and their specific affinities for iron (III). Chem Lett. 2137–2140Google Scholar
  38. Nakanishi, H, Bughio, N, Matsuhashi, S, Ishioka, N, Uchida, H, Tsuji, A, Osa, A, Sekine, T, Kume, T, Mori, S 1999Visualizing real time [11C]methionine translocation in Fe-sufficient and Fe-deficient barley using a positron emitting tracer imaging system (PETIS)J. Exp. Bot.50637643CrossRefGoogle Scholar
  39. Negishi, T, Nakanishi, H, Yazaki, J, Kishimoto, N, Fujii, F, Shimbo, K, Yamamoto, K, Sakata, K, Sasaki, T, Kikuchi, S, Mori, S, Nishizawa, N K 2002cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley rootsPlant J.308394CrossRefPubMedGoogle Scholar
  40. Neumann, G, Haake, C, Römheld, V 1999Improved HPLC method for determination of phytosiderophores in root washings and tissue extractsJ. Plant Nutr.2213891402Google Scholar
  41. Nowack, B, Sigg, L 1997Dissolution of Fe(III)(hydr)oxides by metal-EDTA complexesGeochim. Cosmochim. Acta61951963Google Scholar
  42. Parker, VB, Khodakovskii, IL 1995Thermodynamic properties of The aqueous ions (2+ and 3+) of iron and The key Compounds of ironJ. Phys. Chem. Ref. Data2416991745Google Scholar
  43. Parkhurst D L and Appelo C A J 1999 Users Guide to PhreeqC␣(Version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report, Denver, Colorado 99–4259Google Scholar
  44. Reichard P U 2005 Effects of microbial and plant siderophore ligands on the dissolution of iron oxides. Ph.D. Thesis # 15665 Swiss Federal Institute of Technology, Zurich, SwitzerlandGoogle Scholar
  45. Rengel, Z 2002Chelator EDTA in nutrient solution decreases growth of wheatJ. Plant Nutr.2517091725CrossRefGoogle Scholar
  46. Römheld, V 1991The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approachPlant and Soil130127134CrossRefGoogle Scholar
  47. Römheld, V, Marschner, H 1986Evidence for a specific uptake system for iron phytosiderophores in roots of grassesPlant Physiol.80175180PubMedGoogle Scholar
  48. Samson, S D, Eggleston, CM 2000The depletion and regeneration of dissolution-active sites at the mineral-water interface: II. Regeneration of active sites on α-Fe2O3 at pH 3 and pH 6. GeochimCosmochim. Acta6436753683Google Scholar
  49. Schwarzenbach, G, Schwarzenbach, K 1963Hydroxamatkomplexe. 1. Die Stabilität der Eisen(III)-Komplexe einfacher Hydroxamsäuren und des Ferrioxamins BHelvet. Chim. Acta4613901400Google Scholar
  50. Schwertmann, U, Cornell, R M 2000Iron Oxides in the Laboratory: Preparation and CharacterizationWiley-VCHWeinheimGoogle Scholar
  51. Singh, K, Sasakuma, T, Bughio, N, Takahashi, M, Nakanishi, H, Yoshimura, E, Nishizawa, N K, Mori, S 2000Ability of ancestral wheat species to secrete mugineic acid family phytosiderophores in response to iron deficiencyJ. Plant Nutr.2319731981Google Scholar
  52. Sposito, G 1989The chemistry of soilsOxford University PressOxfordGoogle Scholar
  53. Stewart, J D, Lieffers, V J 1994Diurnal cycles of rhizosphere acidification by Pinus contorta seedlingsPlant and Soil162299302CrossRefGoogle Scholar
  54. Strobel, B W 2001Influence of vegetation on low-molecular-weight carboxylic acids in soil solution – a reviewGeoderma99169198CrossRefGoogle Scholar
  55. Stumm, W 1992Chemistry of the Solid-Water InterfaceWiley-InterscienceNew YorkGoogle Scholar
  56. Stumm, W, Sulzberger, B, Sinninger, J 1990The coordination chemistry of oxide-electrolyte interface; the dependence of surface reactivity (dissolution, redox reactions) on surface structuresCroat. Chem. Acta63277312Google Scholar
  57. Sugiura, Y, Nomoto, K 1984Phytosiderophores - structures and properties of mugineic acids and their metal complexesStruct. Bond.58107135Google Scholar
  58. Takagi, S 1991Mugineic acids as example of root exudates which play an important role in nutrient uptake by plant rootsJohansen, CLee, KKSahrawat, K L eds. Phosphorus Nutrition of Grain Legumes in the Semi-Arid TropicsICRISATPatancheru7790Google Scholar
  59. Takagi, S 1993Production of phytosiderophoresBarton, LLHemming, BC eds. Iron Chelation in Plants and Soil MicroorganismsAcademic PressSan Diego111131Google Scholar
  60. Takagi, S, Nomoto, K, Takemoto, T 1984Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plantsJ. Plant Nutr.7469477Google Scholar
  61. Takagi, S, Kamei, S, Yu, M 1988Efficiency of iron extraction from soil by mugineic acid family phytosiderophoresJ. Plant Nutr.11643651CrossRefGoogle Scholar
  62. Vančura, V 1964Root exudates of plantsPlant and Soil21231248Google Scholar
  63. Wirén, N, Khodr, H, Hider, RC 2000Hydroxylated Phytosiderophore Species Possess an enhanced Chelate Stability and affinity for iron (III)Plant Physiol12411491157Google Scholar
  64. Whitehead, C F eds. 2003(Amino)carboxylate coordination reactions with ferric (hydr)oxides: Adsorption and ligand-assisted dissolutionJohns Hopkins UniversityBaltimore, USAPh.D. Thesis.Google Scholar
  65. Yehuda, Z, Shenker, M, Römheld, V, Marschner, H, Hadar, Y, Chen, Y N 1996The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plantsPlant Phys.11212731280Google Scholar
  66. Yu, Q Y, Kandegedara, A, Xu, Y, Rorabacher, D B 1997Avoiding interferences from Good’s buffers: A contiguous series of non-complexing tertiary amine buffers covering the entire range of pH 3–11Anal. Biochem.2535056CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • P.U. Reichard
    • 1
  • S.M. Kraemer
    • 1
    Email author
  • S.W. Frazier
    • 1
  • R. Kretzschmar
    • 1
  1. 1.Department of Environmental SciencesETH ZürichSchlierenSwitzerland

Personalised recommendations