Plant and Soil

, Volume 280, Issue 1–2, pp 253–266 | Cite as

Ara-Rhizotron: An Effective Culture System to Study Simultaneously Root and Shoot Development of Arabidopsis

  • Florence Devienne-BarretEmail author
  • Céline Richard-Molard
  • Michaël Chelle
  • Olivier Maury
  • Bertrand Ney


Studying Arabidopsis thaliana (L.) Heynh. root development in situ at the whole plant level without affecting shoot development has always been a challenge. Such studies are usually carried out on individual plants, neglecting competition of a plant population, using hydroponic systems or Agar-filled Petri dishes. Those both systems, however, present some limitations, such as difficulty to study precisely root morphogenesis or time-limited culture period, respectively. In this paper, we present a method of Arabidopsis thaliana (L.) Heynh. cultivation in soil medium, named “Ara-rhizotron”. It allows the non-destructive study of shoot and root development simultaneously during the entire period of vegetative growth. In this system, roots are grown in 2D conditions, comparable to other soil cultures. Moreover, grouping several Ara-rhizotrons in a box enables the establishment of 3D shoot competition as for plants grown in a population. In comparison to a control culture grown in pots in the same environmental conditions, the Ara-rhizotron resulted in comparable shoot development in terms of dry mass, leaf area, number of leaves and nitrogen content. We used this new culture system to study the effect of irrigation modalities on plant development. We found that irrigation frequency only affected root partitioning in the soil and shoot nitrogen content, but not shoot or root growth. These effects appeared at the end of the vegetative growth period. This experiment highlights the opportunity offered by the Ara-rhizotron to point out tardy effects, affecting simultaneously shoot development and root architecture of plants grown in a population. We discuss its advantages in relation to root development and physiology, as well as its possible applications.


Arabidopsis cultivation method irrigation population rhizotron root development shoot development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arteca, R N, Arteca, J M 2000A novel method for growing Arabidopsis thaliana plants hydroponicallyPhysiol. Plant.108188193CrossRefGoogle Scholar
  2. Bloom, A J, Sukrapanna, S S 1990Effects of exposure to ammonium and transplant shock upon the induction of nitrate absorptionPlant Physiol.948590Google Scholar
  3. Buer, C S, Masle, J, Wasteneys, G O 2000Growth conditions modulate root-wave phenotypes in ArabidopsisPlant Cell Physiol.4111641170CrossRefPubMedGoogle Scholar
  4. Camposeo, S, Rubino, P 2003Effect of irrigation frequency on root water uptake in sugar beetPlant Soil253301309CrossRefGoogle Scholar
  5. Chaillou, S, Rideout, J W, Raper, C D J, Morot-Gaudry, J -F 1994Responses of soybean to ammonium and nitrate supplied in combination to the whole root system or separately in a split-root systemPhysiol. Plant.90259268CrossRefPubMedGoogle Scholar
  6. Depege, N, Thonat, C, Coutand, C, Julien, J L, Boyer, N 1997Morphological responses and molecular modifications in tomato plants after mechanical stimulationPlant Cell Physiol.3811271134PubMedGoogle Scholar
  7. Dunbabin, V, Rengel, Z, Diggle, A 2001Lupinus angustifolius has a plastic uptake response to heterogeneously supplied nitrate while Lupinus pilosus does notAust. J. Agr. Res.52505512Google Scholar
  8. Freixes, S, Thibaud, M C, Tardieu, F, Muller, B 2002Root elongation and branching is related to local hexose concentration in Arabidopsis thalianaPlant Cell Environ.2513571366CrossRefGoogle Scholar
  9. Gibeaut, D M, Hulett, J, Cramer, G R, Seemann, J R 1997Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditionsPlant Physiol.115317319CrossRefPubMedGoogle Scholar
  10. Giridhar, G, Jaffe, M J 1988Thigmomorphogenesis: XXIII. Promotion of foliar senescence by mechanical perturbation of Avena sativa and four other speciesPhysiol. Plant.74473480Google Scholar
  11. Gonzales, R C, Woods, R E 1992Digital Image ProcessingAddison Wesley Pub. CoReading MA793Google Scholar
  12. Greenwood, D J 1976Nitrogen stress in plantsAdv. Agron.28135Google Scholar
  13. Henriksen, A, Selmer-Olsen, A R 1970Automatic methods for determining nitrate and nitrite in water and soil extractsAnalyst95514518Google Scholar
  14. Jordan, M O 1992Les rhizotrons peuvent-ils être utilisés pour l’étude de la ramification des racines primaires nodales du maïs (Zea mays L)?Agronomie12314Google Scholar
  15. Latimer, J G 1998Mechanical conditioning to control heightHort. Technol.8529534Google Scholar
  16. Lejay, L, Tillard, P, Lepetit, M, Olive, F D, Filleur, S, Daniel-Vedele, F, Gojon, A 1999Molecular and functional regulation of two NO 3 uptake systems by N- and C-status of Arabidopsis plantsPlant J.18509519CrossRefPubMedGoogle Scholar
  17. Linkohr, B I, Williamson, L C, Fitter, A H, Leyser, H M O 2002Nitrate and phosphate availability and distribution have different effects on root system architecture of ArabidopsisPlant J.29751760CrossRefPubMedGoogle Scholar
  18. Loudet, O, Chaillou, S, Merigout, P, Talbotec, J, Daniel-Védèle, F 2003Quantitative trait loci analysis of nitrogen use efficiency in ArabidopsisPlant Physiol.131345358CrossRefPubMedGoogle Scholar
  19. Malamy, J E, Ryan, K S 2001Environmental regulation of lateral root initiation in ArabidopsisPlant Physiol.127899909CrossRefPubMedGoogle Scholar
  20. Mary, B, Recous, S, Darwis, D, Robin, D 1996Interactions between decomposition of plant residues and nitrogen cycling in soilPlant Soil1817182CrossRefGoogle Scholar
  21. McKendree, W L, Smith, R C 1990Inhibition by white light of 86Rb+ absorption in the root apex of cornPlant Physiol.93767771Google Scholar
  22. Mian, M A R, Natziger, E D, Kolb, F L, Teyker, R H 1993Root growth of wheat genotypes in hydroponic culture and␣in the greenhouse under different soil moisture regimesCrop Sci.33283286Google Scholar
  23. Pagès, L 1992Mini-rhizotrons transparents pour l’étude du système racinaire de jeunes plantes. Application à la caractérisation du développement racinaire de jeunes chênes (Quercus robus)Can. J. Bot.7018401847Google Scholar
  24. Saravitz, C H, Chaillou, S, Musset, J, Raper, C D J, Morot-Gaudry, J -F 1994Influence of nitrate on uptake of ammonium by nitrogen-depleted soybean: is the effect located in roots or shoots?J. Exp. Bot.4515751584Google Scholar
  25. Swietlik, D 1992Yield, growth, and mineral nutrition of young ‘Ray Ruby’ grapefruit trees under trickle or flood irrigation and various nitrogen ratesJ. Am. Soc. Hort. Sci.1172227Google Scholar
  26. Tang, C, Robson, A D, Dilworth, M J 1990A split-root experiment shows that iron is required for nodule initiation in Lupinus angustifolius LNew Phytol.1156167Google Scholar
  27. Xu, G, Levkovitch, I, Soriano, S, Wallach, R, A.S,  2004Integrated effect of irrigation frequency and phosphorus level on lettuce: P uptake, root growth and yieldPlant Soil263297309CrossRefGoogle Scholar
  28. Zhang, H, Forde, B G 1998An Arabidopsis MADS box gene that controls nutrient-induced changes in root architectureScience279407409CrossRefPubMedGoogle Scholar
  29. Zhang, H M, Forde, B G 2000Regulation of Arabidopsis root development by nitrate availabilityJ. Exp. Bot.515159CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Florence Devienne-Barret
    • 1
    Email author
  • Céline Richard-Molard
    • 1
  • Michaël Chelle
  • Olivier Maury
  • Bertrand Ney
  1. 1.INRA-INA P-G, Unité Environnement et Grandes CulturesCentre de Recherches de GrignonThiverval-GrignonFrance

Personalised recommendations