Plant and Soil

, Volume 276, Issue 1–2, pp 1–8

Measuring Fine Root Turnover in Forest Ecosystems

  • Hooshang Majdi
  • Kurt Pregitzer
  • Ann-Sofie Morén
  • Jan-Erik Nylund
  • Göran I. Ågren


Development of direct and indirect methods for measuring root turnover and the status of knowledge on fine root turnover in forest ecosystems are discussed. While soil and ingrowth cores give estimates of standing root biomass and relative growth, respectively, minirhizotrons provide estimates of median root longevity (turnover time) i.e., the time by which 50% of the roots are dead. Advanced minirhizotron and carbon tracer studies combined with demographic statistical methods and new models hold the promise of improving our fundamental understanding of the factors controlling root turnover. Using minirhizotron data, fine root turnover (y−1) can be estimated in two ways: as the ratio of annual root length production to average live root length observed and as the inverse of median root longevity. Fine root production and mortality can be estimated by combining data from minirhizotrons and soil cores, provided that these data are based on roots of the same diameter class (e.g., < 1 mm in diameter) and changes in the same time steps. Fluxes of carbon and nutrients via fine root mortality can then be estimated by multiplying the amount of carbon and nutrients in fine root biomass by fine root turnover. It is suggested that the minirhizotron method is suitable for estimating median fine root longevity. In comparison to the minirhizotron method, the radio carbon technique favor larger fine roots that are less dynamics. We need to reconcile and improve both methods to develop a more complete understanding of root turnover.

Key words

minirhizotron radio carbon technique root mortality root production root turnover soil cores statistical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, J D, Mellilo, J M, Nadelhoffer, K J, McClaugherty, C A, Pastor, J 1992Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods.Oecologia66317321Google Scholar
  2. Ågren, G I, Wikström, J F 1993Modelling carbon allocation – A reviewN. Z. J. For. Sci.23343353Google Scholar
  3. Allison, P D 1995Survival Analysis Using the SAS System: A Practical GuideSAS Institute Inc.Cary NC, USAGoogle Scholar
  4. Altman,  1991Practical Statistics for Medical ResearchChapman and Hall London611Google Scholar
  5. Anderson L J,Comas L H,Lakso A N and Eissenstat D M, 489–501 pp.Google Scholar
  6. Andersson, P, Majdi, H 2005Estimating median root longevity at sites with long winter time – Does median reflect the root turnover? Plant Soil00000000Google Scholar
  7. Ares, J, Singh, J S 1974A model of the root biomass dynamics of a shortgrass prairie dominated by Blue grama (Bouteloua gracilis) J. Appl. Ecol.11727743Google Scholar
  8. Baddeley, J A, Watson, C A 2005Influences of root diameter, tree age, soil depth and season of fine root survivorship in Prunus aviumPlant Soil00000000Google Scholar
  9. Bartos, D L, Jameson, D A 1974A dynamic root modelAm.␣Midl. Nat.91499504Google Scholar
  10. Burton, A J, Pregitzer, K S, Crawford, J N, Zogg, G P, Zak, D R 2004Simulated chronic NO3 deposition reduces soil respiration in northern hardwood forestsGlob. Change Biol.1010801091CrossRefGoogle Scholar
  11. Cheng, W, Coleman, D C, Box, J E Jr 1991Measuring root turnover using the minirhizotron techniqueAgric. Ecosyst. Environ.34261268Google Scholar
  12. Cox, D R 1972Regression models and life tablesJ. Roy Soc.B34187220Google Scholar
  13. Eissenstat, D, Yanai, R D 1997The ecology of root lifespanAdv. Ecol. Res.27160Google Scholar
  14. Eissenstat, D M, Wells, C E, Yanai, R D, Whitbeck, J L 2000Building roots in a changing environment: implications for root longevityNew Phytol.1473342CrossRefGoogle Scholar
  15. Fahey, T J, Hughes, J W 1994Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NHJ. Ecol.82533548Google Scholar
  16. Flower-Ellis, J G K, Persson, H 1980Investigation of structural properties and dynamics of Scots pine standsEcol. Bull.32125138Google Scholar
  17. Forde, B G 2002Local and long-range signaling pathways regulating plant responses to nitrateAnn. Rev. Plant Biol.53203224Google Scholar
  18. Franklin, O, Högberg, P, Ekblad, A, Ågren, G I 2003Pine forest floor carbon accumulation in response to N and P K additions – Bomb 14C modeling and respiration studiesEcosystems6644658CrossRefGoogle Scholar
  19. Gaudinski, J B, Trumbore, S E, Davidson, A, Cook, A C, Markewitz, D, Richter, D D 2001The age of fine-root carbon in three forests of the eastern United States measured by radiocarbonOecologia129420429Google Scholar
  20. Gholz, H L, Hendry, L C, Cropper, W P Jr 1986Organic matter dynamics of fine roots in plantations of slash pine (Pinus elliotti) in north FloridaCan. J. For. Res.16529538Google Scholar
  21. Gill, R A, Jackson, R 2000Global patterns of root turnover for terrestrial ecosystemsNew Phytol.1471331Google Scholar
  22. Green, J J, Dawson, L A, Proctor, J, Duff, E 2005Root dynamics in a tropical rain forestPlant Soil00000000Google Scholar
  23. Hackett,  C1972A model of the extension and branching of a seminal root of barley, and its use in studying relations between root dimensions I. The modelAust. J. Biol. Sci25669679Google Scholar
  24. Hendrick, R L, Pregitzer, K S 1992The demography of fine roots in a northern hardwood forestEcology7310941104Google Scholar
  25. Hendrick, R L, Pregitzer, K S 1993The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystemsCan. J. For. Res.2325072520Google Scholar
  26. Hendrick, R L, Pregitzer, K S 1996Applications of minirhizotrons to understand root function in forests and other natural ecosystemsPlant Soil185293304CrossRefGoogle Scholar
  27. Hertel, D, Leuschner, C 2002A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus–Quercus mixed forestPlant Soil239237251CrossRefGoogle Scholar
  28. Himanen, K, Vuylsteke, M, Vanneste, S, Vercruysse, S, Boucheron, E, Alard, P, Chriqui, D, Montagu, M, Inze, D, Beeckman, T 2004Transcript profiling of early lateral root initiationProc. Natl. Acad. Sci. USA10151465151CrossRefPubMedGoogle Scholar
  29. Hodge, A 2004The plastic plant: root responses to heterogeneous supplies of nutrientsNew Phytol.162924CrossRefGoogle Scholar
  30. Johnson, M G, Tingey, D T, Phillips, D L, Storm, M J 2001Advancing fine root research with minirhizotronsEnviron. Exp. Bot.45263289CrossRefPubMedGoogle Scholar
  31. Hosmer,  1999Applied Survival Analysis – Regression Modeling of Time to Event DataWiley and Sons, Inc. New York300Google Scholar
  32. Joslin, J D, Wolfe, M H 1999Disturbances during minirhizotron installation can affect root observation dataSoil. Sci. Soc. Am. J.63218221CrossRefGoogle Scholar
  33. Kaplan, E L, Meier, P 1958Nonparametric estimation from incomplete observationsJ. Am. Stat. Assoc.53457481Google Scholar
  34. King, J S, Albaugh, T J, Allen, H L, Buford, M, Strain, B R, Dougherty, P 2002Seasonal dynamics of fine roots relative to foliage and stem growth in loblolly pine (Pinus taeda L.) as affected by water and nutrient availabilityNew Phytol.154389398CrossRefGoogle Scholar
  35. Konôpka, K, Janssens, I A, Yuste, J C, Ceulemans, R 2005Comparison of fine root dynamics in Scots pine and pedunculate oak in sandy soilPlant Soil00000000Google Scholar
  36. Kurz, W A, Kimmins, J P 1987Analysis of some sources of error in methods used to determine fine root production in forest ecosystems: a simulation approachCan. J. For. Res.17909912Google Scholar
  37. Leake, J R, Donnelly, D P, Saunders, E M, Boddy, L, Read, D J 2001Rates and quantities of carbon to ectomycorrhizal mycelium following 14C pulse labeling of Pinussylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungusTree Physiol.217182PubMedGoogle Scholar
  38. Luo, Y 2003Uncertainties in interpretation of isotope signals for estimation of fine root longevity: theoretical considerationsGlob. Change Biol.91181129CrossRefGoogle Scholar
  39. Lynch, J P, Nielsen, K L, Davis, R D, Jablokow, A G 1997SimRoot: modelling and visualization of root systemsPlant Soil188139151CrossRefGoogle Scholar
  40. Majdi, H 1996Root sampling methods – applications and limitations of minirhizotron techniquePlant Soil185225258Google Scholar
  41. Majdi, H, Damm, E, Nylund, J E 2001Longevity of mycorrhizal roots in relation to branching order and nutrient availabilityNew Phytol.150195202CrossRefGoogle Scholar
  42. Majdi,  H2005Fine root production and turnover in a Norway spruce stand in northern Sweden: effects of nitrogen and water manipulationEcosystems  (in press)Google Scholar
  43. Marshall, J D, Waring, R H 1985Predicting fine root production and turnover by monitoring root starch and soil temperatureCan. J. For. Res.15791800Google Scholar
  44. Matamala, R, Gonzàlez-Meler, M A, Jastrow, J D, Norby, R J, Schlesinger, W H 2003Impacts of fine root turnover on forest NPP and soil C sequestration potentialScience2113851387Google Scholar
  45. McClaugherty, C A, Aber, J D, Melillo, J M 1982The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystemsEcology6314811490Google Scholar
  46. Nadelhoffer, K, Raich, J W 1992Fine root production estimates and belowground carbon allocation in forest ecosystemsEcology7311391147Google Scholar
  47. Niklas, K J, Enquist, B J 2002Canonical rules for plant organ biomass partitioning and annual allocationAm. J. Bot.89812819Google Scholar
  48. Persson, H 1979Fine-root production, mortality and decomposition in forest ecosystemsVegetatio41101109Google Scholar
  49. Pregitzer, K S 2002Fine roots of trees – a new perspectiveNew Phytol.154267273CrossRefGoogle Scholar
  50. Pregitzer, K S, DeForest, J L, Burton, A J, Allen, M F, Ruess, R␣W, Hendrick, R L 2002Fine root architecture of nine North American treesEcol. Monogr.72293309Google Scholar
  51. Publicover, D A, Vogt, K A 1993A comparison of methods for estimating forest fine root production with respect to sources of errorCan. J. For. Res.2311791186Google Scholar
  52. Ruess, R W, Hendrick, R L, Burton, A J, Pregitzer, K S, Sveinbjornssön, B, Allen, M F, Maurer, G E 2003Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior AlaskaEcol. Monogr.73643662Google Scholar
  53. Sala, O E, Biondini, M E, Lauenroth, W K 1988Bias in estimates of primary production: an analytical solutionEcol. Mod.444355Google Scholar
  54. Santantonio, D, Hermann, R K 1985Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western OregonAnn. Sci. For. (Paris).42113142Google Scholar
  55. Singh, J S, Lauenrouth, W K, Hunt, H W, Swift, D M 1984Bias and random errors in estimators of net root production: a simulation approachEcology6517601764Google Scholar
  56. Tierney, G, Fahey, T 2001Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broad leaf forestPlant Soil229167176CrossRefGoogle Scholar
  57. Tierney, G, Fahey, T 2002Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methodsCan. J. For. Res.3216921697CrossRefGoogle Scholar
  58. Trumbore, S E, Druffel, E R M 1995

    Carbon isotopes for characterizing sources and turnover of nonliving organic matter

    Zepp, R GSonntag, C K eds. Role of Nonliving Organic Matter in the Earth’s Carbon CycleJohn Wiley and SonsChichster342
    Google Scholar
  59. Trumbore, S E, Gaudinski, J B 2003The secret lives of rootsScience30213441345CrossRefPubMedGoogle Scholar
  60. Upchurch, D R, Ritchie, J T 1983Root observations using a video recording system in minirhizotronsAgric. J.7510091015Google Scholar
  61. Vogt, K A, Grier, C C, Vogt, D J 1986Production, turnover, and nutrient dynamics of above-and belowground detritus of world forestsAdv. Ecol. Res.15303377Google Scholar
  62. Vogt, K, Persson, H 1991

    Measuring growth and development of roots

    Lassoie T and Hinckley, JP eds. Techniques, Approaches in Forest Tree EcophysiologyCRS Press IncFlorida477501
    Google Scholar
  63. Vogt, K, Vogt, D J, Bloomfield, J 1998Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem levelPlant Soil2007189CrossRefGoogle Scholar
  64. Waring, R H 1983Estimating forest growth and efficiency in relation to canopy leaf areaAdv. Ecol. Res.13327354Google Scholar
  65. Wells, C E, Eissenstat, D M 2001Marked differences in survivorship among apple roots of different diameters Ecology82882892Google Scholar
  66. Wells, C E, Eissenstat, D M 2003Beyond the roots of young seedlings: the influence of age and order on fine root physiologyJ. Plant Growth Regul.21324334CrossRefGoogle Scholar
  67. Withington, J M, Elkin, A D, Bulaj, B, Olesiński, J, Tracy, J N, Bouma, T J, Oleksyn, J, Anderson, L J, Modrzyński, J, Reich, P B, Eissenstat, D M 2003The impact of material used for minirhizotron tubes for root researchNew Phytol.160533544CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hooshang Majdi
    • 1
  • Kurt Pregitzer
    • 3
  • Ann-Sofie Morén
    • 1
  • Jan-Erik Nylund
    • 2
  • Göran I. Ågren
    • 1
  1. 1.Department of Ecology and Environmental ResearchSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Forest Products and MarketsSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA

Personalised recommendations