Advertisement

Plant and Soil

, Volume 275, Issue 1–2, pp 349–359 | Cite as

Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil

  • Baodong Chen
  • Iver Jakobsen
  • Per Roos
  • Yong-Guan ZhuEmail author
Article

Abstract

Phytostabilization strategies may be suitable to reduce the dispersion of uranium (U) and the overall environmental risks of U-contaminated soils. The role of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, in such phytostabilization of U was investigated with a compartmented plant cultivation system facilitating the specific measurement of U uptake by roots, AM roots and extraradical hyphae of AM fungi and the measurement of U partitioning between root and shoot. A soil-filled plastic pot constituted the main root compartment (CA) which contained a plastic vial filled with U-contaminated soil amended with 0, 50 or 200 mg KH2PO4−P kg–1soil (CB). The vial was sealed by coarse or fine nylon mesh, permitting the penetration of both roots and hyphae or of just hyphae. Medicago truncatula plants grown in CA were inoculated with G. intraradices or remained uninoculated. Dry weight of shoots and roots in CA was significantly increased by G. intraradices, but was unaffected by mesh size or by P application in CB. The P amendments decreased root colonization in CB, and increased P content and dry weight of those roots. Glomus intraradices increased root U concentration and content in CA, but decreased shoot U concentrations. Root U concentrations and contents were significantly higher when only hyphae could access U inside CB than when roots could also directly access this U pool. The proportion of plant U content partitioned to shoots was decreased by root exclusion from CB and by mycorrhizas (M) in the order: no M, roots in CB > no M, no roots in CB > M, roots in CB > M, no roots in CB. Such mycorrhiza-induced retention of U in plant roots may contribute to the phytostabilization of U contaminated environments.

Keywords

arbuscular mycorrhiza Glomus intraradices Medicago truncatula phytoremediation uranium (U) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunzl, K, Kretner, R, Schramel, P, Szeles, M, Winkler, R 1995Speciation of 238U, 226Ra, 210Pb, 228Ra, and stable Pb in the soil near an exhaust ventilating shaft of a uranium mineGeoderma674553CrossRefGoogle Scholar
  2. Chen, B D, Christie, P, Li, X L 2001A modified glass bead compartment cultivation system for studies on nutrient uptake by arbuscular mycorrhizaChemosphere42185192PubMedGoogle Scholar
  3. Chen, B D, Jakobsen, I, Roos, P, Borggaard, O K, Zhu, Y G 2005Mycorrhiza and root hairs enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transferNew Phytol.165591598PubMedGoogle Scholar
  4. Campbell, M D, Biddle, K T 1977Frontier areas and exploration techniques. Frontier uranium exploration in the south-central United StatesCampbell, M D eds. Geology of Alternate Energy ResourcesHouston Geological societyHouston, Texas344Google Scholar
  5. Ciavatta, L, Ferri, D, Grenthe, I, Salvatore, F 1981The first acidification step of the tris(carbonate)dioxourantantate(VI) ion, UO2(CO3) 3 4− J. Inorg. Chem.20463467CrossRefGoogle Scholar
  6. Duff, M C, Amrhein, C 1996Uranium (VI) adsorption on goethite and soil in soil carbonate solutionsSoil Sci. Soc. Am. J.6013931400CrossRefGoogle Scholar
  7. Dushenkov, S 2003Trends in phytoremediation of radionuclidesPlant Soil249167175CrossRefGoogle Scholar
  8. Ebbs, S D, Brady, D J, Kochian, L V 1998Role of uranium speciation in the uptake and translocation of uranium by plantsJ. Exp. Bot.4911831190CrossRefGoogle Scholar
  9. Fellows, R J, Ainsworth, C C, Driver, C J, Catoldo, D A 1998 Dynamics and transformation of radionuclides in soils and ecosystem healthMadison, WI eds. Soil Chemistry and Ecosystem HealthSoil Sci. Soc. Am.USA85131Google Scholar
  10. Francis, A J, Dodge, C J 1998Remediation of soils and wastes contaminated with uranium and toxic metalsEnviron. Sci. Technol.3239933998CrossRefGoogle Scholar
  11. GenStat Committee 2002 The guide to GenStat (release 6.1). Part 1: Syntax and data management. Payne RW, VSN International, Hemel Hempstead, UKGoogle Scholar
  12. Grenthe, I, Fuger, J, Konings, R, Lemire, RJ, Muller, AB, Nguyen-Trung, C, Wanner, J 1992The Chemical Thermodynamics of UraniumElsevierNew YorkGoogle Scholar
  13. Huang, J W, Blaylock, M J, Kapulnik, Y, Ensley, B D 1998Phytoremediation of uranium- contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plantsEnviron. Sci. Technol.3220042008Google Scholar
  14. Jakobsen, I, Abbott, L K, Robson, A D 1992External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterranum L. (1) Spread of hyphae and phosphorus inflow into rootsNew Phytol.120371380Google Scholar
  15. Jakobsen, I, Nielsen, N E 1983Vesicular arbuscular mycorrhiza in field grown crops I. Mycorrhizal infection in cereals and peas at various times and soil depthsNew Phytol93401413Google Scholar
  16. Jerden, J L,Jr, Sinha, A K, Zelazny, L 2003Natural immobilization of uranium by phosphate mineralization in an oxidizing saprolite–soil profile: chemical weathering of the Coles Hill uranium deposit, VirginiaChem. Geol.199129157Google Scholar
  17. Joner, E J, Briones, R, Leyval, C 2000Metal-binding capacity of arbuscular mycorrhizal myceliumPlant Soil226227234Google Scholar
  18. Langmuir, D 1978Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore depositsGeoch. Cosmoch. Acta42547569CrossRefGoogle Scholar
  19. Leyval, C, Joner, E J, Val, C, Haselwandter, K 2002Potential of arbuscular mycorrhizal fungi for bioremediationGianinazzi, SSchüepp, HBarea, J MHaselwandter, K eds. Mycorrhizal Technology in AgricultureBirkhäuser VerlagBasel Switzerland175186Google Scholar
  20. Li, X L, Geoege, E, Marschner, H 1991Extension of the phosphorus depletion zone in VAM white clover in a calcareous soilPlant soil1364148Google Scholar
  21. Mortvedt, J J 1994Plant and soil relationships of uranium and thorium decay series radionuclides - a reviewJ Environ. Qual.23643650CrossRefGoogle Scholar
  22. Pearson, J N, Jakobsen, I 1993The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with 32P and 33PNew Phytol.124489494Google Scholar
  23. Phillips, J M, Hayman, D S 1970Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infectionTrans. Br. Mycol. Soc.55158161CrossRefGoogle Scholar
  24. Rufyikiri, G, Thiry, Y, Declerck, S 2003Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditionsNew Phytol.158391399CrossRefGoogle Scholar
  25. Rufyikiri, G, Thiry, Y, Wang, L, Delvaux, B, Declerck, S 2002Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditionsNew Phytol.156275281CrossRefGoogle Scholar
  26. Rufyikiri, G, Declerck, S, Thiry, Y 2004aComparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditionsMycorrhiza14203207CrossRefGoogle Scholar
  27. Rufyikiri, G, Huysmans, L, Wannijn, J, Hees, M, Leyval, C, Jakobsen, I 2004bArbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soilEnviron. Pollut.130427436CrossRefGoogle Scholar
  28. Saric, M R, Stojanovic, M, Babic, M 1995Uranium in plant species grown on natural barren soilJ. Plant Nutri.1815091518CrossRefGoogle Scholar
  29. Shahandeh, H, Hossner, L R 2002Enhancement of uranium phytoaccumulation from contaminated soilsSoil Sci.167269280CrossRefGoogle Scholar
  30. Shahandeh, H, Lee, J H, Hossner, L R, Loeppert, R H 2001Bioavailability of uranium and plutonium to plants in soil–water systems and the potential of phytoremediationGobran, G RWenzel, W WLombi, E eds. Trace Elements in the RhizosphereCRC Press LLCLondon, UK93124Google Scholar
  31. Sheppard, M I, Thibault, D H 1984Natural uranium concentrations of native plants over a low-grade ore bodyCan. J. Bot.6210691075CrossRefGoogle Scholar
  32. Sheppard, M I, Thibault, D H 1992Desorption and extraction of selected heavy metals from soilsSoil Sci. Soc. Am. J.56415423CrossRefGoogle Scholar
  33. Smith, S E, Barker, S J 2002Plant phosphate transporter genes help harness the nutritional benefits of arbuscular mycorrhizal symbiosisTrends Plant Sci.7189190PubMedGoogle Scholar
  34. Smith, S E, Read, D J 1997Mycorrhizal Symbiosis2 Academic PressLondon, UKGoogle Scholar
  35. Smith, S E, Smith, F A 1990Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transportNew Phytol.114138Google Scholar
  36. Smith, S E, Smith, F A, Jakobsen, I 2003Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responsesPlant Physiol.1331620CrossRefPubMedGoogle Scholar
  37. Viereck, N, Hansen, P E, Jakobsen, I 2004Phosphate pool dynamics in the arbuscular mycorrhizal fungus Glomus intraradices studied by in vivo 31P NMR spectroscopyNew Phytol.162783794CrossRefGoogle Scholar
  38. Weiersbye, I M, Straker, C J, Przybylowicz, W J 1999Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailingsNucl. Instru. Meth. Phys. Res. B158335343Google Scholar
  39. Whiting, S N, Reeves, R D, Richards, D, Johnson, M S, Cooke, J A, Malaisse, F, Paton, A, Smith, J A C, Angle, J S, Chaney, R L, Ginocchio, R, Jaffré, T, Johns, R, McIntyre, T, Purvis, O W, Salt, D E, Schat, H, Zhao, F J, Baker, A J M 2004Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediationRes. Ecol.12106116Google Scholar
  40. Xu, L C, Wang, Y X, Liu, J W, Lu, X S, Liu, Y C, Liu, X Y 2002Radioactive contamiantion of the environment as a result of uranium production: a case study at the abandoned Lincang uranium mine, Yunnan Province, ChinaSci China (B)451119Google Scholar
  41. Zhu, Y-G, Shaw, G 2000Soil contamination with radionuclides and potential remediationChemosphere41121128PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Baodong Chen
    • 1
  • Iver Jakobsen
    • 2
  • Per Roos
    • 3
  • Yong-Guan Zhu
    • 1
    Email author
  1. 1.Department of Soil Environmental Science, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Biosystems DepartmentRisø National LaboratoryRoskildeDenmark
  3. 3.Radiation Research DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations