Plant and Soil

, Volume 280, Issue 1–2, pp 77–90

Grazing and Ecosystem Carbon Storage in the North American Great Plains

  • Justin D. Derner
  • Thomas W. Boutton
  • David D. Briske
Article

Abstract

Isotopic signatures of 13C were used to quantify the relative contributions of C3 and C4 plants to whole-ecosystem C storage (soil+plant) in grazed and ungrazed sites at three distinct locations (short-, mid- and tallgrass communities) along an east–west environmental gradient in the North American Great Plains. Functional group composition of plant communities, the source and magnitude of carbon inputs, and total ecosystem carbon storage displayed inconsistent responses to long-term livestock grazing along this gradient. C4 plants [primarily Bouteloua gracilis (H.B.K.) Lag ex Steud.] dominated the long-term grazed site in the shortgrass community, whereas the ungrazed site was co-dominated by C3 and C4 species; functional group composition did not differ between grazed and ungrazed sites in the mid- and tallgrass communities. Above-ground biomass was lower, but the relative proportion of fine root biomass was greater, in grazed compared to ungrazed sites at all three locations. The grazed site of the shortgrass community had 24% more whole-ecosystem carbon storage compared to the ungrazed site (4022 vs. 3236 g C m−2). In contrast, grazed sites at the mid- and tallgrass communities had slightly lower (8%) whole-ecosystem carbon storage compared to ungrazed sites (midgrass: 7970 vs. 8683 g C m−2; tallgrass: 8273 vs. 8997 g C m−2). Differential responses between the shortgrass and the mid- and tallgrass communities with respect to grazing and whole-ecosystem carbon storage are likely a result of: (1) maintenance of larger soil organic carbon (SOC) pools in the mid- and tallgrass communities (7476–8280 g C m−2) than the shortgrass community (2517–3307 g C m−2) that could potentially buffer ecosystem carbon fluxes, (2) lower root carbon/soil carbon ratios in the mid- and tallgrass communities (0.06–0.10) compared to the shortgrass community (0.20–0.27) suggesting that variation in root organic matter inputs would have relatively smaller effects on the size of the SOC pool, and (3) the absence of grazing-induced variation in the relative proportion of C3 and C4 functional groups in the mid- and tallgrass communities. We hypothesize that the magnitude and proportion of fine root mass within the upper soil profile is a principal driver mediating the effect of community composition on the biogeochemistry of these grassland ecosystems.

Keywords

δ13C isotope signatures carbon storage grazing Great Plains soil organic carbon 

Abbreviations

A. gerardii

Andropogon gerardii

ANPP

annual net primary productivity

B. gracilis

Bouteloua gracilis

C

carbon

P. smithii

Pascopyrum smithii

S. scoparium

Schizachyrium scoparium

SOC

soil organic carbon

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, S, Smeins, F E 1991

    Ecosystem-level processes

    Heitschmidt, R KStuth Grazing, J W eds. Management: An Ecological PerspectiveTimber PressPortland, OR109139
    Google Scholar
  2. Bardgett, R D, Wardle, D A, Yeates, G W 1998Linking above-ground and below-ground interactions: How plant responses to foliar herbivory influence soil organismsSoil Biol. Biochem.3018671878Google Scholar
  3. Bark D, 1987 Konza Prairie Research Natural Area, Kansas. In The climates of the long-term ecological research sites. Ed. D. Greeland. pp. 45–50. Institute of Arctic and Alpine Research, Occasional Paper No. 44, Univ Colorado, Boulder, COGoogle Scholar
  4. Boutton, T W 1996

    Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change

    Boutton, T WYamasaki, S I eds. Mass Spectrometry of SoilsMarcel DekkerNew York4782
    Google Scholar
  5. Boutton, T W, Nordt, L C, Archer, S R, Midwood, A J, Casar, I 1993

    Stable carbon isotope ratios of soil organic matter and their potential use as indicators of paleoclimate

    Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphereInternational Atomic Energy AgencyVienna, Austria445459
    Google Scholar
  6. Branson, F, Weaver, J E 1953Quantitative study of degeneration of mixed prairieBot. Gaz.114397416CrossRefGoogle Scholar
  7. Briske, D D, Boutton, T W, Wang, Z 1996Contribution of flexible allocation priorities to herbivory tolerance in C4 perennial grasses: An evaluation with 13C labelingOecologia105151159Google Scholar
  8. Briske, D D, Richards, J H 1995

    Plant responses to defoliation: A physiological, morphological, and demographic evaluation

    Budunah, D JSosebee, R E eds. Wildland Plants: Physiological Ecology And Developmental MorphologySociety for Range ManagementDenver, CO635710
    Google Scholar
  9. Burke, I C, Lauenroth, W K, Riggle, R, Brannen, P, Madigan, B, Beard, S 1999Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patternsEcosystems2422438CrossRefGoogle Scholar
  10. Burke, I C, Lauenroth, W K, Vinton, M A, Hook, P B, Kelly, R H, Epstein, H E, Aguiar, M R, Robles, M D, Aguilera, M O, Murphy, K L, Gill, R A 1998Plant-soil interactions in temperate grasslandsBiogeochemistry42121143CrossRefGoogle Scholar
  11. Cambardella, C A, Elliot, E T 1992Particulate soil organic matter changes across a grassland cultivation sequenceSoil Sci. Soc. Am. J.56777783Google Scholar
  12. Caswell, H, Reed, F, Stephenson, S N, Werner, P A 1973Photosynthetic pathways and selective herbivory: a hypothesisAm. Nat.107465480CrossRefGoogle Scholar
  13. Chapin, F S, Walker, B H, Hobbs, R J, Hooper, D U, Lawton, J H, Sala, O E, Tilman, D 1997Biotic control over the functioning of ecosystemsScience277500504Google Scholar
  14. Conant, R T, Paustian, K, Elliott, E T 2001Grassland management and conversion into grassland: effects on soil carbonEcol. Appl.11343355Google Scholar
  15. Coplen, T B 1995

    Reporting of stable carbon, hydrogen, and oxygen isotopic abundances

    Reference and Intercomparison Materials For Stable Isotopes of Light ElementsInternational Atomic Energy AgencyVienna, Austria3134
    Google Scholar
  16. Coupland, R T, Johnson, R E 1965Rooting characteristics of native grassland species in SaskatchewanJ. Ecol.53 475507Google Scholar
  17. Derner, J D, Briske, D D, Boutton, T W 1997Does grazing mediate soil carbon and nitrogen accumulation beneath C4 perennial grasses along an environmental gradient?Plant Soil191147156CrossRefGoogle Scholar
  18. Dormaar, J F, Naeth, M A, Wilms, W D, Chanasyk, D S 1995Effect of native prairie, crested wheatgrass (Agropyron cristatum (L.) Gaertn.) and Russian wildrye (Elymus junceus Fisch.) on soil chemical propertiesJ. Range Manage.48258263Google Scholar
  19. Eissenstat, D M, Yanai, R D 1997The ecology of root lifespanAdv. Ecol. Res.27160Google Scholar
  20. Epstein, H E, Burke, I C, Lauenroth, W K 1999Response of the shortgrass steppe to changes in rainfall seasonalityEcosystems2139150Google Scholar
  21. Epstein, H E, Lauenroth, W K, Burke, I C, Coffin, D P 1997Productivity patterns of C3 and C4 functional types in the US Great PlainsEcology78722731Google Scholar
  22. Frank, A B, Tanaka, D L, Hoffmann, L, Follett, R F 1995Soil carbon and nitrogen of Northern Great Plains grasslands as influenced by long-term grazingJ. Range Manage.48470474Google Scholar
  23. Gee, G W, Bauder, J W 1986

    Particle-size analysis

    Klute, A eds. Methods of Soil Analysis, Part I. Physical and Mineralogical Methods. Agronomy Monograph No. 9Soil Science Society of AmericaMadison, WI383411
    Google Scholar
  24. Gill, R A, Burke, I C 2002Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppePlant Soil241233242CrossRefGoogle Scholar
  25. Hart, R H 2001Plant biodiversity on shortgrass steppe after 55 years of zero, light, moderate, or heavy cattle grazingPlant Ecol.155111118CrossRefGoogle Scholar
  26. Hart, R H, Ashby, M M 1998Grazing intensities, vegetation, and heifer gains: 55 years on shortgrassJ. Range Mange.51392398Google Scholar
  27. Heffner, R A, Butler, M J,IV, Reilly, C K 1996Pseudoreplication revisitedEcology7725582562Google Scholar
  28. Hulett G K, Tomanek G W 1969 Herbage dynamics on a mixed prairie grassland. US/IBP Technical Report No. 108Google Scholar
  29. Hurlbert, S H 1984Pseudoreplication and the design of ecological field experimentsEcol. Mono.54187211Google Scholar
  30. Jackson, R B, Canadell, J, Ehleringer, J R, Mooney, H A, Sala, O E, Schulze, E D 1996A global analysis of root distributions for terrestrial biomesOecologia108389411CrossRefGoogle Scholar
  31. Lauenroth, W K, Sala, O E 1992Long-term forage production of North American shortgrass steppeEcol. Appl.2397403Google Scholar
  32. Midwood, A J, Boutton, T W 1998Soil carbonate decomposition by acid has little effect on (13C of organic matterSoil Biol. Biochem.3013011307CrossRefGoogle Scholar
  33. Milchunas, D G, Lauenroth, W K, Burke, I C 1998Livestock grazing, animal and plant biodiversity of shortgrass steppe and relationship to ecosystem functionOikos836474Google Scholar
  34. Milchunas, D G, Lauenroth, W K, Chapman, P L, Kazempour, M K 1990Community attributes along a perturbation gradient in a shortgrass steppeJ. Veg. Sci.1375384Google Scholar
  35. Milchunas, D G, Lauenroth, W K, Chapman, P L, Kazempour, M K 1989Effects of grazing, topography, and precipitation on the structure of semiarid grasslandVegetation801123CrossRefGoogle Scholar
  36. Nieuwenhuize, J, Maas, Y, Middelburg, J 1994Rapid analysis of organic carbon and nitrogen in particulate materialsMar. Chem.45217224CrossRefGoogle Scholar
  37. Ojima, D S, Dirks, B O, Glenn, E P, Owensby, C E, Scurlock, J␣O 1993Assessment of C budget for grasslands and drylands of the worldWater Air Soil Poll.7095109Google Scholar
  38. Olson J S, Watts J A, Allison L J 1985 Major world ecosystem complexes ranked by carbon in live vegetation: A database. Oak Ridge, TN: Carbon Dioxide Information Center, Oak Ridge National Laboratory, NDP-017Google Scholar
  39. Parton, W J, Risser, P G 1979

    Simulated impact of management practices upon the tallgrass prairie

    French, N eds. Perspectives in Grassland EcologySpringer-VerlagNew York135155
    Google Scholar
  40. Pastor, J, Cohen, Y 1997Herbivores, the functional diversity of plant species, and the cycling of nutrients in ecosystemsTheor. Pop. Biol.51165179CrossRefGoogle Scholar
  41. Pearcy, R W, Ehleringer, J R 1984Comparative ecophysiology of C3 and C4 plantsPlant Cell Envir.7113Google Scholar
  42. Reeder, J D, Schuman, G E 2002Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelandsEnvir. Poll.116457463Google Scholar
  43. Reeder J D, Schuman G E, Morgan J A and LeCain D R, 2004 Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Envir. Manage. DOI: 10.1007/s00267-003-9106-5Google Scholar
  44. Ritchie, M E, Tilman, D, Knops, J M 1998Herbivore effects on plant and nitrogen dynamics in oak savannaEcology79165177Google Scholar
  45. Ruess, R W 1987

    The role of large herbivores in nutrient cycling of tropical savannas

    Walker, B eds. Determinants of Tropical SavannasIRL PressOxford, UK6791
    Google Scholar
  46. Ruess, R W, Seagle, S W 1994Landscape patterns in soil microbial processes in the Serengeti National Park, TanzaniaEcology75892904Google Scholar
  47. Sage, R F, Monson, R E 1999C4 Plant BiologyAcademic PressNew YorkGoogle Scholar
  48. Schimel, D S, Parton, W J, Kittel, T G, Ojima, D S, Cole, C V 1990Grassland biogeochemistry: Links to atmospheric processesClimatic Change171325CrossRefGoogle Scholar
  49. Schlesinger, W H 1997Biogeochemistry: An Analysis of Global ChangeAcademic PressNew YorkGoogle Scholar
  50. Schuman, G E, Reeder, J D, Manley, J T, Hart, R H, Manley, W A 1999Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangelandEcol. Appl.96571Google Scholar
  51. Schuman, G E, Janzen, H H, Herrick, J E 2002Soil carbon dynamics and potential carbon sequestration by rangelandsEnvir. Poll.116391396Google Scholar
  52. Scurlock, J M, Hall, D O 1998The global carbon sink: A grassland perspectiveGlobal Change Biol.4229233CrossRefGoogle Scholar
  53. Seastedt, T R, Coxwell, C C, Ojima, D S, Parton, W J 1994Controls of plant and soil carbon in a semihumid temperate grasslandEcol. Appl.4344353Google Scholar
  54. Sims, P L 1988

    Grasslands

    Barbour, GBillings, W D eds. North American Terrestrial VegetationCambridge Univ. PressCambridge, UK265286
    Google Scholar
  55. Sims, P L, Singh, J S, Lauenroth, W K 1978The structure and function of ten western North American grasslands. I.␣Abiotic and vegetational characteristicsJ. Ecol.66251285Google Scholar
  56. Smoliak, S, Dormaar, J F, Johnston, A 1972Long-term grazing effects on Stipa-Bouteloua prairie soilsJ. Range Manage.25246250Google Scholar
  57. Svejcar, T J, Boutton, T W 1985The use of stable carbon isotope analysis in rooting studiesOecologia67205208CrossRefGoogle Scholar
  58. Tilman, D 1998

    Species composition, species diversity, and ecosystem processes: understanding the impacts of global change

    Pace, M LGroffman, P M eds. Successes, Limitations, and Frontiers in Ecosystem ScienceSpringer-VerlagNew York452472
    Google Scholar
  59. Vinton, M A, Burke, I C 1995Interactions between individual plant species and soil nutrient status in shortgrass steppeEcology7611161133Google Scholar
  60. Wedin, D A 1995

    Species, nitrogen, and grassland dynamics: The constraints of stuff

    Jones, C GLawton, J H eds. Linking Species and EcosystemsChapman and HallNew York253262
    Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Justin D. Derner
    • 1
  • Thomas W. Boutton
    • 2
  • David D. Briske
    • 2
  1. 1. High Plains Grasslands Research StationUSDA-ARSCheyenneUSA
  2. 2.Department of Rangeland Ecology and ManagementTexas A&M UniversityUSA

Personalised recommendations