Plant and Soil

, Volume 279, Issue 1–2, pp 297–306 | Cite as

Arsenate Causes Differential Acute Toxicity to Two P-deprived Genotypes of Rice Seedlings (Oryza sativa L.)

  • C. N. Geng
  • Y. G. Zhu
  • Y. Hu
  • P. Williams
  • A. A. Meharg


Significant genotypic difference in response to arsenate toxicity in rice (Oryza sativa) was investigated in root elongation, arsenate uptake kinetics, physiological and biochemical response and arsenic (As) speciation. Uptake kinetics data showed that P-deprived genotype 94D-54 had a little higher As uptake than P-deprived 94D-64, but the difference was not large enough to cause acute toxicity in P-deprived 94D-54. There was no difference in tissue P concentrations between the two genotypes under P deficient conditions. In addition, arsenic speciation in plant tissues (using high performance liquid chromatography-inductively coupled plasma mass spectrometry) was not different between P pretreatments and between genotypes. P-deprived genotype 94D-54 suffered much higher stress induced by arsenate toxicity than P-deprived genotype 94D-64, in terms of lipid peroxidation, tissue H2O2 concentrations and exosmosis of K, P and As. However, P-deprived 94D-54 also had higher overproduction of enzymatic antioxidants (with higher GPX, SOD, CAT) and NPT (non-protein thiols) than P-deprived 94D-64. It appeared that, the higher sensitivity of P-deprived 94D-54 to arsenate toxicity might cause the overproduction of NPT, thus leading to the depletion of GSH and to the accumulation of H2O2. The differential sensitivity of the two genotypes has major implications for breeding rice for As affected paddy soil.


acute toxicity antioxidants arsenic rice stress level 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alscher, R G 1989Biosynthesis and antioxidant function of glutathione in plantsPhysiol. Plantarum77457464CrossRefGoogle Scholar
  2. Aravind, P, Prasad, M N V 2003Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L: a free floating freshwater macrophytePlant Physiol. Bioch.41391397CrossRefGoogle Scholar
  3. Bertolero, F, Pozzi, G, Sabbioni, E, Saffiotti, U 1987Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformationCarcinogenesis8803808PubMedGoogle Scholar
  4. Bowler, C, Van, C W, Van, M M, Inze, D 1994Superoxide dismutase in plantsCrit. Rev. Plant Sci.13199218Google Scholar
  5. Dat, J, Vandenabeele, S, Vranova, E, Van, M M, Inze, D, Van, B F 2000Dual action of the active oxygen species during plant stress responsesCell. Mol. Life Sci.57779795PubMedCrossRefGoogle Scholar
  6. Delnomdedieu, M, Basti, M M, Otvos, J D, Thomas, D J 1993Transfer of arsenite from glutathione to dithiols: A model of interactionChem. Res. Tox.6598602CrossRefGoogle Scholar
  7. Dixon, H B F 1997The biochemical action of arsenic acids especially as phosphate analoguesAdv. Inorg. Chem.44191227CrossRefGoogle Scholar
  8. Geng C N, Zhu Y G, Tong Y P and Christie P, 2005 Uptake and translocation of arsenic and phosphorus in pho2 mutant and wild type of Arabidopsis thaliana. J. Plant Nutr. (in press).Google Scholar
  9. Ghosh, M, Shen, J, Rosen, B P 1999Pathways of As (III) detoxification in Saccharomyces cerevisiae P. Natl. Acad. Sci.9650015006CrossRefGoogle Scholar
  10. Grill, E, Winnacker, E L, Zenk, M H 1985Phytochelatins: the principal heavy metal complexing peptides of higher plantsScience.230674676PubMedGoogle Scholar
  11. Gupta, M, Cuypers, A, Vangronsveld, J, Clijsters, H 1999Copper affects the enzymes of the ascorbate–glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris Physiol. Plantarum106262267CrossRefGoogle Scholar
  12. Hartley-Whitaker, J, Ainsworth, G, Meharg, A A 2001Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivityPlant Cell Environ.24713722CrossRefGoogle Scholar
  13. Heitkemper, D T, Vela, N P, Stewart, K R, Westphal, C S 2001Determination of totaland speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometryJ. Anal. Atom. Spectrom16299306CrossRefGoogle Scholar
  14. Jha, A B, Dubey, R S 2004Carbohydrate metabolism in growing rice seedlings under arsenic toxicityJ. Plant Physiol.161867872PubMedCrossRefGoogle Scholar
  15. Jocelyn, P C 1972 Biochemistry of the SH Group: The Occurrence, Chemical Properties, Metabolism and Biological Function of Thiols and DisulphidesAcademic PressLondon, UKGoogle Scholar
  16. Lee, D A, Chen, A, Schroeder, J I 2003Ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptakePlant J.35637646PubMedCrossRefGoogle Scholar
  17. Liu, S X, Athar, M, Lippai, I, Waldren, C, Hei, T K 2001Induction of oxyradicals by arsenic: implication for mechanism of genotoxicityP. Natl. Acad. Sci. USA.9816431648CrossRefGoogle Scholar
  18. Liu, W J, Zhu, Y G, Smith, F A, Smith, S E 2004Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture?New Phytol.162481488CrossRefGoogle Scholar
  19. Llamas, A, Uiirich, C I, Sanz, A 2000Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) rootsPlant Soil.2192128CrossRefGoogle Scholar
  20. Mazhoudi, S, Chaoui, A, Ghorbal, M H, Ferjani, E E 1997Response of antioxidant enzymes to excess copper in tomato (Lycopersicon Esculentum Mill.)Plant Sci.127129137CrossRefGoogle Scholar
  21. Meharg, A A, Hartley-Whitaker, J 2002Arsenic uptake and metabolism in arsenic resistant and nonresistant plant speciesNew Phytol.1542943CrossRefGoogle Scholar
  22. Meharg, A A, Macnair, M R 1992Suppression of the high-affinity phosphate-uptake system – a mechanism of arsenate tolerance in Holcus Lanatus LJ. Exp. Bot.43519524Google Scholar
  23. Metwally, A, Safronova, V I, Belimov, A A, Dietz, K 2005Genotypic variation of the response to cadmium toxicity in Pisum sativum LJ. Exp. Bot.56167178PubMedGoogle Scholar
  24. Mulherjee, S P, Choudhuri, M A 1983Determination of glycolate oxidase activity, H2O2 content and catalase activityPhysiol. Plantarum58167170Google Scholar
  25. Mylona, P V, Polidoros, A N, Scandalios, J G 1998Modulation of antioxidant responses by arsenic in maizeFree Radical Bio. Med.25576585CrossRefGoogle Scholar
  26. Quaghebeur, M, Rengel, Z 2003The distribution of arsenate and arsenite in shoots and roots of holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supplyPlant Physiol.13216001609PubMedCrossRefGoogle Scholar
  27. Quaghebeur, M, Rengel, Z, Smirk, M 2003Arsenic speciation in terrestrial plant material using microwave-assisted extraction, ion chromatography and inductively coupled plasma mass spectrometryJ. Anal. At Spectrom18128134CrossRefGoogle Scholar
  28. Raab, A, Feldmann, J, Meharg, A A 2004The Nature of Arsenic-Phytochelatin Complexes in Holcus lanatus and Pteris cretica Plant Physiol.13411131122PubMedCrossRefGoogle Scholar
  29. Schmöger, M E V, Oven, M, Grill, E 2000Detoxification of arsenic by phytochelatins in plantsPlant Physiol.122793802PubMedCrossRefGoogle Scholar
  30. Scott, N, Hatlelid, K M, MacKenzie, N E, Carter, D E 1993Reactions of arsenic (III) and arsenic (V) species with glutathioneChem. Res. Tox.6102106CrossRefGoogle Scholar
  31. Sharma, S S, Kaul, S, Metwally, A, Goyal, K C, Finkemeier, I, Karl-Josef, D 2004Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional statusPlant Sci.16612871295CrossRefGoogle Scholar
  32. Sneller, F E C, Van, H L M, Kraaijeveld-Smit, F J L, Ten, B W M, Koevoets, P L M, Schat, H, Verkleij, J A C 1999Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatinsNew Phytol.144223232CrossRefGoogle Scholar
  33. Sukchawalit, R, Prapagdee, B, Charoenlap, N, Vattanaviboon, P, Mongkolsuk, S 2005Protection of Xanthomonas against arsenic toxicity involves the peroxide-sensing transcription regulator OxyRRes. Microbiol.1563034PubMedCrossRefGoogle Scholar
  34. Tong, Y P, Kneer, R, Zhu, Y G 2004Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediationTrends Plant Sci.979PubMedCrossRefGoogle Scholar
  35. Ullrich-Eberius, C, Sanz, A, Novacky, A J 1989Evaluation of arsenate- and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1J. Exp.Bot.40119128Google Scholar
  36. Zhao, F J, Dunham, S J, McGrath, S P 2002Arsenic hyperaccumulation by different fern speciesNew Phytol.1562731CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • C. N. Geng
    • 1
    • 2
  • Y. G. Zhu
    • 1
  • Y. Hu
    • 1
  • P. Williams
    • 3
  • A. A. Meharg
    • 3
  1. 1.Research Center for Eco-environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Shanghai Academy of Environmental SciencesShanghaiChina
  3. 3.School of Biological Sciences, University of AberdeenAberdeenUK

Personalised recommendations