Plant and Soil

, Volume 279, Issue 1–2, pp 287–296 | Cite as

Effect of Cu Toxicity on Growth of Cowpea (Vigna unguiculata)

  • Peter M. Kopittke
  • Neal W. Menzies


Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv. Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥1.7 μM (corresponding to 90% maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.


buffer copper toxicity heavy metal ion exchange resin root symptoms 



cyclohexane-1,2-diaminetetra-acetic acid




electrical conductivity


ionic strength


inductively coupled plasma atomic emission spectrometry


inductively coupled plasma mass spectrometry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, N A, Bernal, M P, Ater, M 2002Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays Plant Soil239103111CrossRefGoogle Scholar
  2. Arnon, D I, Grossenbacker, K A 1947Nutrient culture of crops with the use of synthetic ion exchange materialsSoil Sci.63159181Google Scholar
  3. Ashwath D C 1990 Effects of manganese toxicity on growth and nodulation of tropical grain legumes. M.Sc. Thesis, School of Agronomy and Horticulture, The University of Queensland. 172 p.Google Scholar
  4. Blamey, F P C, Nishizawa, N K, Yoshimura, E 2004Timing, magnitude, and location of initial soluble aluminium injuries to mungbean rootsSoil Sci. Plant Nutr.506776Google Scholar
  5. Brady, D J, Edwards, D G, Asher, C J, Blamey, F P C 1993Calcium amelioration of aluminium toxicity effects on root hair development in soybean (Glycine max (L.) Merr.)New Phytol.123531538CrossRefGoogle Scholar
  6. Checkai, R T, Hendrickson, L L, Corey, R B, Helmke, P A 1987A method for controlling the activities of free metal, hydrogen, and phosphate ions in hydroponic solutions using ion exchange and chelating resinsPlant Soil99321334CrossRefGoogle Scholar
  7. Checkai, R T, Norvell, W A 1992A recirculating resin-buffered hydroponic system for controlling nutrient ion activitiesJ. Plant Nutr.15871892Google Scholar
  8. Clark, R B, Pier, P A, Knudsen, D, Maranville, J W 1981Effect of trace element deficiencies and excesses on mineral nutrients in sorghumJ. Plant Nutr.3357374Google Scholar
  9. Eleftheriou, E P, Karataglis, S 1989Ultrastructural and morphological characteristics of cultivated wheat growing on copper-polluted fieldsBot. Acta102134140Google Scholar
  10. GenStat 2003 GenStat for Windows. Release 7.2. 7th ed. VSN International Ltd., Oxford.Google Scholar
  11. Hageman, R H, Flesher, D, Wabol, J J, Storck, D H 1961An improved nutrient culture technique for growing corn under greenhouse conditionsAgron. J.53175180CrossRefGoogle Scholar
  12. Harper, J E, Nicholas, J C 1976Control of nutrient solution pH with an ion exchange system: effect on soybean nodulationPhysiol. Plant.382428CrossRefGoogle Scholar
  13. Hill, S A, Miyasaka, S C, Yost, R S 2000Taro responses to excess copper in solution cultureHortscience35863867Google Scholar
  14. Iwasaki, K, Maier, P, Fecht, M, Horst, W J 2002Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.)Plant Soil238281288CrossRefGoogle Scholar
  15. Kabata-Pendias, A, Pendias, H 2001Trace Elements in Soils and PlantsCRC PressBoca Raton, FL413Google Scholar
  16. Kalyanaraman, S B, Sivagurunathan, P 1993Effect of cadmium, copper, and zinc on the growth of blackgramJ. Plant Nutr.1620292042Google Scholar
  17. Kaplan, D I, Adriano, D C, Sajwan, K S 1990Thallium toxicity in beanJ. Environ. Qual.19359365CrossRefGoogle Scholar
  18. Kopittke, P M, Menzies, N W, Blamey, F P C 2004Rhizotoxicity of aluminate and polycationic aluminium at high pHPlant Soil266343354CrossRefGoogle Scholar
  19. Liao, M T, Hedley, M J, Woolley, D J, Brooks, R R, Nichols, M A 2000Copper uptake and translocation in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. I. Copper uptake and distribution in plantsPlant Soil221135142CrossRefGoogle Scholar
  20. Lidon, F C, Henriques, F S 1993Effects of copper toxicity on growth and the uptake and translocation of metals in rice plantsJ. Plant Nutr.1614491464Google Scholar
  21. Lin, J, Jiang, W, Liu, D 2003Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.)Bioresource Technol.86151155CrossRefGoogle Scholar
  22. Marschner, H 1995Mineral Nutrition of Higher PlantsAcademic PressLondon889Google Scholar
  23. Martinie, G D, Schilt, A A 1976Investigation of the wet oxidation efficiencies of perchloric acid mixturesAnal. Chem.487074CrossRefGoogle Scholar
  24. Ouzounidou, G 1994Root growth and pigment composition in relationship to element uptake in Silene compacta plants treated with copperJ. Plant Nutr.17933943Google Scholar
  25. Ouzounidou, G, Ciamporova, M, Moustakas, M, Karataglis, S 1995Responses of maize (Zea mays L.) plants to copper stress – I. Growth, mineral content and ultrastructure of rootsEnviron. Exp. Bot.35167176CrossRefGoogle Scholar
  26. Panou-Filotheou, H, Bosabalidis, A M 2004Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum)Plant Sci.16614971504CrossRefGoogle Scholar
  27. Parker, D R, Norvell, W A, Chaney, R L 1995GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computersLoeppert, R HSchwab, A PGoldberg, S eds. Chemical Equilibrium and Reaction ModelsSoil Science Society of America and American Society of AgronomyMadison, WI253269Google Scholar
  28. Parker, D R, Pedler, J F, Thomason, D N, Li, H 1998Alleviation of copper rhizotoxicity by calcium and magnesium at defined free metal-ion activitiesSoil Sci. Soc. Am. J.62965972CrossRefGoogle Scholar
  29. Parkhurst D 2005 PhreeqcI. United States Geological Survey. (Accessed March 2005).Google Scholar
  30. Reichman S M 2001 Responses of Australian native plants to metal toxicity. Ph.D. Thesis, School of Land and Food Sciences, The University of Queensland. 252 p.Google Scholar
  31. Reuter, D J, Edwards, D G 1997Temperate and tropical cropsReuter, D JRobinson, J B D eds. Plant Analysis: an Interpretation ManualCSIRO PublishingCollingwood83284Google Scholar
  32. Savage, W, Berry, W L, Reed, C A 1981Effects of trace element stress on the morphology of developing seedlings of lettuce (Lactuca sativa L. Grand Rapids) as shown by scanning electron microscopyJ. Plant Nutr.3129138CrossRefGoogle Scholar
  33. Sheldon, A R, Menzies, N W 2005The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culturePlant Soil278341349CrossRefGoogle Scholar
  34. Smith F W, Imrie B C and Pieters W H J 1983 Foliar Symptoms of Nutrient Disorders in Mung Bean (Vigna radiata). Commonwealth Scientific and Industrial Research Organisation. 11 p.Google Scholar
  35. Smith, G S, Cornforth, I S, Henderson, H V 1984Iron requirements of C3 pathway and C4 pathway plantsNew Phytol.97543556CrossRefGoogle Scholar
  36. Stadt, K J, Taylor, G J, Dale, M R T 1992Control of relative growth rate by application of the relative addition rate technique to a traditional solution culture systemPlant Soil142113122Google Scholar
  37. Taylor, G J, Foy, C D 1985Differential uptake and toxicity of ionic and chelated copper in Triticum aestivum Can. J. Bot.6312711275CrossRefGoogle Scholar
  38. Taylor, G J, Blamey, F P C, Edwards, D G 1998Antagonistic and synergistic interactions between aluminum and manganese on growth of Vigna unguiculata at low ionic strengthPhysiol. Plant.104183194CrossRefGoogle Scholar
  39. Wagatsuma, T, Kaneko, M, Hayasaka, Y 1987Destruction process of plant-root cells by aluminumSoil Sci. Plant Nutr.33161175Google Scholar
  40. Wissemeier, A H, Horst, W J 1990Manganese oxidation capacity of homogenates of cowpea (Vigna unguiculata (L.) Walp) leaves differing in manganese toleranceJ. Plant Physiol.136103109Google Scholar
  41. Wood, M, Cooper, J E, Holding, A J 1984Soil acidity factors and nodulation of Trifolium repens Plant Soil78367397CrossRefGoogle Scholar
  42. Yamamoto, Y, Kobayashi, Y, Matsumoto, H 2001Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea rootsPlant Physiol.125199208PubMedCrossRefGoogle Scholar
  43. Zhu, B, Alva, A K 1993Effect of pH on growth and uptake of copper by Swingle citrumelo seedlingsJ. Plant Nutr.1618371845Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of Land and Food SciencesThe University of QueenslandSt. LuciaAustralia

Personalised recommendations