Plant and Soil

, Volume 275, Issue 1–2, pp 135–146 | Cite as

A Comparison of Soil Microbial Community Structure, Protozoa and Nematodes in Field Plots of Conventional and Genetically Modified Maize Expressing the Bacillus thuringiens is CryIAb Toxin

  • B.S. Griffiths
  • S. Caul
  • J. Thompson
  • A.N.E. Birch
  • C. Scrimgeour
  • M.N. Andersen
  • J. Cortet
  • A. Messéan
  • C. Sausse
  • B. Lacroix
  • P.H. Krogh
Article

Abstract

Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the near-isogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark was sampled at sowing (May) and harvest (October) over two years (2002, 2003); from E France at harvest 2002, sowing and harvest 2003; and from SW France at sowing and harvest 2003. Samples were analysed for microbial community structure (2003 samples only) by community-level physiological-profiling (CLPP) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize across all three sites only revealed differences for nematodes, with a smaller population under the Bt maize. Nematode community structure was different at each site and the Bt effect was not confined to specific nematode taxa. The effect of the Bt maize was small and within the normal variation expected in these agricultural systems.

Keywords

Bacillus thuringiensis toxin genetically modified plants maize microbial community structure nematodes protozoa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angle, J S 1994Release of transgenic plants: biodiversity and population-level considerationsMol. Ecol.34550Google Scholar
  2. Blackwood, C B, Buyer, J S 2004Soil microbial communities associated with Bt and non-Bt corn in three soilsJ. Environ. Qual.33832836PubMedCrossRefGoogle Scholar
  3. Bottjer, K P, Bone, L W, Gill, S S 1985Nematoda: susceptibility of the eggs to Bacillus thuringiensis toxinsExp. Parasitol.60239244PubMedCrossRefGoogle Scholar
  4. Bruinsma, M, Kowalchuk, GA, Veen, JA 2002Effects of Genetically Modified Plants on Soil EcosystemsNetherlands Institute of EcologyHeteren, Netherlands63Google Scholar
  5. M, Bruinsma, Kowalchuk, A G, Veen, AJ 2003Effects of genetically modified plants on microbial communities and processes in soilBiol. Fertil. Soils37329337Google Scholar
  6. Darbyshire, J F, Wheatley, R E, Greaves, M P, Inkson, R H E 1974A rapid method for estimating bacterial and protozoan populations in soilRev. Ecol. Biol. Sol11465474Google Scholar
  7. Donegan, K K, Palm, C J, Fieland, V J, Porteous, L A, Ganio, L M, Schaller, D L, Bucao, L Q, Seidler, R J 1995Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis varkurstaki endotoxin. Appl. Soil Ecol.2111124Google Scholar
  8. Donegan, K K, Schaller, D L, Stone, J K, Ganio, L M, Reed, G, Hamm, P B, Seidler, P J 1996Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis vartenebrionis endotoxin. Transgenic Res.52535Google Scholar
  9. Donnison, L M, Griffith, G S, Hedger, J, Hobbs, P J, Bardgett, R D 2000Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and WalesSoil Biol. Biochem.32253263Google Scholar
  10. Drury, C F, Stone, J A, Findlay, W I 1991Microbial biomass and soil structure associated with corn, grasses and legumesSoil Sci. Soc. Am. J.55805811CrossRefGoogle Scholar
  11. Escher, N, Kach, B, Nentwig, W 2000Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodliceBasic Appl. Ecol.1161169CrossRefGoogle Scholar
  12. Frostegård, A, Tunlid, A, Bååth, E 1991Microbial biomass measured as total lipid phosphate in soils of different organic contentJ. Microbiol. Methods14151163Google Scholar
  13. Grayston, S J, Wang, S, Campbell, C D, Edwards, A C 1998Selective influence of plant species on microbial diversity in the rhizosphereSoil Biol. Biochem.30369378CrossRefGoogle Scholar
  14. Griffiths, B S, Bonkowski, M, Dobson, G, Caul, S 1999Changes in the soil microbial community structure in the presence of microbial-feeding nematodes and protozoaPedobiologia43297304Google Scholar
  15. Griffiths, B S, Caul, S 1993Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residuesBiol. Fertil. Soils15201207CrossRefGoogle Scholar
  16. Groot, A T, Dicke, M 2002Insect-resistant transgenic plants in a multi-trophic contextPlant J.31387406PubMedCrossRefGoogle Scholar
  17. Hackett, C A, Griffiths, B S 1997Statistical analysis of the time-course of Biolog substrate utilizationJ. Microbiol. Methods306369CrossRefGoogle Scholar
  18. Hill, T C J, McPherson, E F, Harris, J A, Birch, P 1993Microbial biomass estimated by phospholipids phosphate in soils with diverse microbial communitiesSoil Biol. Biochem.2517791786CrossRefGoogle Scholar
  19. Hopkins, D W, Gregorich, E G 2003Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maizeEur. J. Soil Sci.54793800CrossRefGoogle Scholar
  20. Höss S, Arndt M, Baumgarte S and Tebbe C C 2004 Effects of soil from experimental fields with transgenic corn on the nematode Caenorhabditis elegans. Abstract from Society of Environmental Toxicology and Chemistry, 14th Annual Meeting, Prague, April 2004.Google Scholar
  21. Hurley, M A, Roscoe, M E 1983Automated statistical analysis of microbial enumeration by dilution seriesJ. Appl. Bacteriol.55159164Google Scholar
  22. James C 2003 Preview: global status of commercialized transgenic crops: 2003. ISAAA Briefs No.30. International Service for the Acquisition of Agri-biotech Applications, Ithaca, New York.Google Scholar
  23. Jepson, P C, Croft, B A, Pratt, G E 1994Test systems to determine the ecological risks posed by toxin release from Bacillus thuringiensis genes in crop plantsMol. Ecol.38189Google Scholar
  24. Manachini B, Fiore M C, Landi S and Arpaia S 2003 Nematode species assemblage in Bt-expressing transgenic eggplant and their isogenic control. In Biodiversity Implications of Genetically Modified Plants. Monte Verità, Ascona, Switzerland, Sept. 7–12, 2003. pp. 31–32.Google Scholar
  25. Manachini, B, Landi, S, Fiore, MC, Festa, M, Arpaia, S 2004First investigations on the effects of Bt-transgenic Brassica napus L on the trophic structure of the nematofaunaIOBC wprs Bulletin27103108Google Scholar
  26. Meadows, J, Bone, L W 1990Bacillus thuringiensis strains affect population growth of the free-living nematode Turbatrix acetiInvert. Reprod. Dev.177376Google Scholar
  27. Nielsen, P, Petersen, S O 2000Ester-linked polar lipid fatty acid profiles of soil microbial communities: a comparison of extraction methods and evaluation of interference from humic acidsSoil Biol. Biochem3212411249CrossRefGoogle Scholar
  28. Page, F C 1976Taxonomic criteria for Limax amoebae with descriptions of three new species of Hartmanella and three of VahlkampfiaJ. Protozool.14499521Google Scholar
  29. Payne, RW, Lane, PW, Digby, PGN, Harding, SA, Leech, PK, Morgan, GW, Todd , AD, Thompson, R, Tunnicliffe Wilson, G, Welhom, SJ, White , RP 1993Genstat 5 Release Reference ManualOxford University PressOxford, UKGoogle Scholar
  30. Saxena, D, Flores, S, Stotsky, G 2002Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation eventsSoil Biol. Biochem.34133137Google Scholar
  31. Saxena, D, Stotsky, G 2001Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soilSoil Biol. Biochem.3312251230CrossRefGoogle Scholar
  32. Schmalenberger, A, Tebbe, C C 2003Genetic profiling of noncultivated bacteria from the rhizospheres of sugar beet (Beta vulgaris) reveal field and annual variability but no effect of a transgenic herbicide resistanceCan. J. Microbiol.4918PubMedCrossRefGoogle Scholar
  33. Schutter, M E, Sandeno, J M, Dick, R P 2001Seasonal, soil type and alternative management influences on microbial communities of vegetable cropping systemsBiol. Fertil. Soils34397410Google Scholar
  34. Siciliano, SD, Theoret,  CM, Freitas, JR, Hucl, PJ, Germida, JJ 1998Differences in the microbial communities associated with the roots of different cultivars of canola and wheatCan. J. Microbiol.44844851CrossRefGoogle Scholar
  35. Sims, S R, Martin, J W 1997Effect of the Bacillus thuringiensis insecticidal proteins CryIA(b), CryIA(c), CryIIA and CryIIIA on Folsomia candida and Xenylla grisea (Insecta: Collembola)Pedobiologia41412416Google Scholar
  36. Sims, S R, Ream, J E 1997Soil inactivation of the Bacillus thuringiensis subspkurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory, microcosm and field studies. J. Agr. Food Chem.4515021505Google Scholar
  37. Trevors, J T, Kuikman, P, Watson, B 1994Transgenic plants and biogeochemical cyclesMol. Ecol.35764Google Scholar
  38. Wheatley, R E, Caul, S, Crabb, D, Daniell, T J, Griffiths, B S, Ritz, K 2003Microbial population dynamics related to temporal variations in nitrification in three arable fieldsEur. J. Soil Sci.54707714CrossRefGoogle Scholar
  39. Wei-Xiang, W, Qing-Fe, Y, Hang, M 2004Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soilEur. J. Soil Biol.401522Google Scholar
  40. Widmer, F, Fließbach, A, Laczkó, E, Schulze-Aurich, J, Zeyer, J 2001Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and BiologTM-analysesSoil Biol. Biochem.3310291036CrossRefGoogle Scholar
  41. Wilkinson, J E, Twell, D, Lindsey, K 1997Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plantsJ. Exp. Bot.48265275Google Scholar
  42. Wolfenbarger, L L, Phifer, P R 2000The ecological risks and benefits of genetically engineered plantsScience29020882093PubMedCrossRefGoogle Scholar
  43. Wu, W-X, Ye, Q-F, Min, H, Duan, X-J, Jin, W-M 2004Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soilSoil Biol. Biochem.36289295Google Scholar
  44. Yu, L, Berry, R E, Croft, B A 1997Effects of Bacillus thuringiensis toxin in transgenic cotton and potato on Folsomia candida (Collembola: Isotomidae) and Oppia nites (Acari: Oribatidae)J. Econ. Entomol.90113118Google Scholar
  45. Zelles, L, Bai, Q Y, Ma, R X, Rackwitz, R, Winter, K, Beese, F 1994Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and poly-hydroxybutyrate in agriculturally managed soilsSoil Biol. Biochem.26439446CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • B.S. Griffiths
    • 1
  • S. Caul
    • 1
  • J. Thompson
    • 1
  • A.N.E. Birch
    • 1
  • C. Scrimgeour
    • 1
  • M.N. Andersen
    • 2
  • J. Cortet
    • 3
  • A. Messéan
    • 4
  • C. Sausse
    • 4
  • B. Lacroix
    • 5
  • P.H. Krogh
    • 6
  1. 1.Scottish Crop Research InstituteDundeeUK
  2. 2.Department of Crop Physiology and Soil Science, Danish Institute of Agricultural SciencesResearch Centre FoulumTjeleDenmark
  3. 3.Institut Méditerranéen d'Ecologie et PaléoécologieUniversité Saint JérômeMarseille cedex 20France
  4. 4.Centre technique interprofessionnel des Oléagineux métropolitainsCentre de GrignonThiverval GrignonFrance
  5. 5.ARVALIS - Institut du végétal station Inter-instituts 6BaziègeFrance
  6. 6.Soil Fauna and Ecotoxicology Research Unit, Department of Terrestrial EcologyNational Environmental Research InstituteSilkeborgDenmark

Personalised recommendations