Plant and Soil

, Volume 273, Issue 1–2, pp 327–335 | Cite as

Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil

  • Caroline Dechamps
  • Nancy H. Roosens
  • Céline Hotte
  • Pierre Meerts
Article

Abstract

The heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy metal polluted soils (metallicolous ecotype MET) and on soils with normal heavy metal content (non-metallicolous ecotype: NMET). In order to assess the extent and structure of variation in growth, shoot accumulation of Cd, Zn and mineral element (Ca, Mg, K, Fe), a MET ecotype from Belgium and a NMET ecotype from Luxembourg were studied. Seven maternal families from two populations of each ecotype were grown on both Cd and Zn contaminated soil. Although both ecotypes presented a similar heavy metal tolerance in the experimental conditions tested, they differed in several points. The MET populations had markedly higher biomass and higher root:shoot ratio compared to NMET populations. The Zn, and at lesser extent, the Cd hyperaccumulation capacity tended to be higher in the NMET populations. The same trend was observed for the foliar concentrations of Mg, Ca and Fe with NMET populations having higher concentrations compared to MET ones. Cd and Zn concentrations were negatively correlated with the biomass of both ecotype. However, the negative correlation between the Zn and biomass was much lower in MET ecotype suggesting a tighter control of internal Zn concentration in this ecotype. Finally, although the Cd phytoextraction capacity was similar in both ecotype, a higher Zn phytoextraction capacity was detected in NMET ecotype when these plants grow on moderate Cd and Zn concentrations.

Keywords

genetic variation heavy metals (Cd Zn) hyperaccumulation mineral composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assunção, A G L, TenBookum, W M, Nelissen, H J M, Vooijs, R, Schat, H, Ernst, W H O 2003Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types.New Phytol.159411419CrossRefGoogle Scholar
  2. Assunção, A G L, DaCosta Martins, P, De Folter, S, Vooijs, R, Schat, H, Aarts, M G M 2001Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens.Plant Cell Environ.24217226Google Scholar
  3. Baker, A J M, Reeves, R D, Hajar, A S M 1994Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C Presl (Brassicaceae).New Phytol.1276168Google Scholar
  4. Clemens, S, Antosiewicz, D M, Ward, J M, Schachtman, D P, Schroeder, J I 1998The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast.Proc. Natl. Acad. Sci. USA.951204312048CrossRefPubMedGoogle Scholar
  5. Cosio, C, Martinoia, E, Keller, C 2004Hyperaccumulation of Cadmium an Zinc in Thlaspi caerulescensandArabidopsis halleri at the leaf cellular levelPlant Physiol.134716725CrossRefPubMedGoogle Scholar
  6. Dubois, S, Cheptou, P-O, Petit, C, Meerts, P, Poncelet, M, Vekemans, X, Lefèbvre, C, Escarré, J 2003Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens.New Phytol.157633641CrossRefGoogle Scholar
  7. Escarré, J, Lefèbvre, C, Gruber, W, Leblanc, M, Lepart, J, Rivière, Y, Delay, B 2000Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation.New Phytol.145429437CrossRefGoogle Scholar
  8. Frérot, H, Petit, C, Gruber, W, Collin, C, Escarré, J 2003Zinc and cadmium accumulation in controlled crosses between metallicolous and non metallicolous populations of Thlaspi caerulescens (Brassicaceae).New Phytol.157643648CrossRefGoogle Scholar
  9. Gardner, R C 2003Genes for magnesium transport.Curr. Opin. Plant Biol.6263267CrossRefPubMedGoogle Scholar
  10. Guerinot, M L 2000The ZIP family of metal transporters.Biochim. Biophys. Acta.1465190198PubMedGoogle Scholar
  11. Ingrouille, M J, Smirnoff, N 1986Thlaspi caerulescens J. and C Presl. (T. alpestre L) in Britain.New Phytol.102219233Google Scholar
  12. Koch, M, Mummenhoff, K, Hurka, H 1998Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: Evidence from genetic studies based on isozyme analysis.Biochem. Syst. Ecol.26823838CrossRefGoogle Scholar
  13. Küpper, H, Zhao, F, McGrath, S 1999Cellular compartimentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens.Plant Physiol.119305312CrossRefPubMedGoogle Scholar
  14. Lambinon J, De Langhe J-E, Delvosalle L and Duvigneaud J 1992 Nouvelle Flore de la Belgique du Grand-Duché de Luxembourg, du nord de la France et des régions voisines. Jardin botanique national de Belgique, Meise, B.Google Scholar
  15. Lasat, M M, Baker, A J M, Kochian, L V 1996Physiological characterization of root Zn 2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi.Plant Physiol.11217121722Google Scholar
  16. Lasat, M M, Pence, N S, Garvin, D F, Ebbs, S D, Kochian, L V 2000Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens.J. Exp. Bot.517179CrossRefPubMedGoogle Scholar
  17. Lloyd-Thomas D H (1995) Heavy metal hyperaccumulation by Thlaspi caerulescens J. & C. Presl. Ph.D. Thesis, Univ. Sheffield, UK.Google Scholar
  18. Lombi, E, Zhao, F J, Dunham, S J, McGrath, S P 2000Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense.New Phytol.1451120CrossRefGoogle Scholar
  19. Macnair, M 2002Within and between population genetic variation for zinc accumulation in Arabidopsis halleri.New Phytol.1555966CrossRefGoogle Scholar
  20. Molitor, M, Dechamps, C, Gruber, W, Meerts, P 2005Thlaspi caerulescens on non metalliferous soil in Luxembourg: Ecological niche and genetic variation in mineral element composition.New Phytol.165503512CrossRefPubMedGoogle Scholar
  21. Meerts, P, Duchêne, Ph, Gruber, W, Lefèbvre, C 2003Metal accumulation and competitive ability in metallicolous and non metallicolous Thlaspi caerulescens from continental Europe.Plant Soil.24918CrossRefGoogle Scholar
  22. Meerts, P, Van Isacker, N 1997Heavy metal tolerance and accumulation in metallicolous and non metallicolous populations of Thlaspi caerulescens from continental Europe.Plant Ecol.133221231CrossRefGoogle Scholar
  23. Pence, N S, Larsen, P B, Ebbs, S D, Letham, D L D, Lasat, M M, Garvin, D F, Eide, D, Kochian, L V 2000The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.Proc. Natl. Acad. Sci. USA.9749564960CrossRefPubMedGoogle Scholar
  24. Pollard, A J, Baker, A J M 1996Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens.New Phytol.132113118Google Scholar
  25. Pollard, A J, Powell, K D, Harper, F A, Smith, J A C 2002The genetic basis of metal hyperaccumulation in plants.Crit. Rev. Plant Sci.21539566Google Scholar
  26. Roosens, N, Verbruggen, N, Meerts, P, Ximénezde Embùn, P, Smith, J A C 2003Variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescensfrom Western Europe.Plant Cell Environ.2616571672CrossRefGoogle Scholar
  27. Salt, D E, Prince, R C, Baker, A J M, Raskin, I, Pickering, I J 1999Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy.Environ. Sci. Technol.33713717CrossRefGoogle Scholar
  28. Silvertown, J W, Lovett Doust, J 1993Introduction to Plant Population Biology.Blackwell Scientific PublicationsOxford, UK.Google Scholar
  29. Shaul, O, Hilgemann, DW, de-Almeida-Engler, J, Van Montagu, M V, Inze, D, Galili, G 1999Cloning and characterization of a novel Mg 2+/H + exchanger.EMBO J.839733980CrossRefGoogle Scholar
  30. Schwartz, C, Guimont, S, Saison, C, Perronnet, K, Morel, J L 2001Phytoextraction of Cd and Zn by the hyperaccumulator Thlaspi caerulescens as affected by plant size and origin.S. Afr. J. Sci97261264Google Scholar
  31. StatSoft, Inc. 2003 Statistica (data analysis software), Version 6. www.statsoft.com.Google Scholar
  32. Tolrà, R P, Poschenrieder, C, Barcelo, J 1996Zinc hyperaccumulation in Thlaspi caerulescens. I. Influence on growth and mineral nutrition.J. Plant Nutr.1915311540Google Scholar
  33. Vàzquez, M D, Barcelò, J, Poschenrieder, C, Mádico, J, Hatton, P, Baker, A J M, Cope, G H 1992Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metalsJ Plant Physiol.140350355Google Scholar
  34. Vàzquez, M D, Poschenrieder, C, Barcelo, J, Baker, A J M, Hatton, P, Cope, G H 1994Compartimentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J and C Presl .Bot Acta.107243250Google Scholar
  35. Zhao, F J, Hamon, R E, Lombi, E, McLaughlin, M J, McGrath, S P 2002Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.J. Exp. Bot.53535543CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Caroline Dechamps
    • 1
  • Nancy H. Roosens
    • 2
  • Céline Hotte
    • 1
  • Pierre Meerts
    • 1
  1. 1.Laboratoire de Génétique et Ecologie Végétales (Jardin Massart)Université Libre de BruxellesBrusselsBelgium
  2. 2.Laboratoire de Physiologie et Génétique Moléculaire des Plantes (campus Plaine)Université Libre de BruxellesBrusselsBelgium

Personalised recommendations