Plant and Soil

, 274:141 | Cite as

Roles of Aquaporins in Root Responses to Irrigation

  • Rebecca Vandeleur
  • Christa Niemietz
  • Joanne Tilbrook
  • Stephen D. Tyerman
Article

Abstract

Due to current environmental issues concerning the use of water for irrigation, the improvement of crop water-use efficiency and a reduction in water consumption has become a priority. New irrigation methods that reduce water use, while still maintaining production have been developed. To optimise these techniques knowledge of above- and below-ground plant physiological responses is necessary. During growth, plant roots are exposed to cycles of wetting and drying in normal rain-fed and irrigation situations. This review concentrates on the below-ground aspects, in particular the water permeability of roots. Significant research has been conducted on the root anatomy and hydraulic conductivity of desert plants subjected to wetting and drying. Major intrinsic proteins (MIPs), most of which show aquaporin (water-channel) activity are likely to be involved in balancing the water relations of the plants during water deficit. However, many MIPs seem to allow permeation of other small neutral solutes and some may allow permeation of ions under certain conditions. The ability of the plant to rapidly respond to rewetting may be important in maintaining productivity. It has been suggested that aquaporins may be involved in this rapid response. The down-regulation of the aquaporins during dry conditions can also limit water loss to the soil, and intrinsic sensitivity of aquaporins to water potential is shown here to be very strong in some cases (NOD26). However, the response of aquaporins in various plant species to water deficits has been quite varied. Another component of aquaporin regulation in response to various stresses (hypoxia/anoxia, salinity and chilling) may be related to redistribution of flow to more favourable regions of the soil. Some irrigation techniques may be triggering these responses. Diurnal fluctuations of root hydraulic conductance that is related to aquaporin expression seem to match the expected transpirational demands of the shoot, and it remains to be seen if shoot-to-root signalling may be important in regulation of root aquaporins. If so, canopy management typical of horticultural crops may impact on root hydraulic conductance. An understanding of the regulation of aquaporins may assist in the development of improved resistance to water stress and greater efficiency of water use by taking into account where and when roots best absorb water.

Keywords

aquaporins hydraulic conductivity irrigation mechanosensitive-gating MIP NOD26 pH regulation rectification roots water channels water stress 

Abbreviation

MIP

major intrinsic protein

TIP

tonoplast intrinsic protein

PIP

plasma membrane intrinsic protein

Lp

hydraulic conductivity

Lo

hydraulic conductance

Pf

osmotic water permeability

PRD

partial root zone drying

RDI

regulated deficit irrigation

References

  1. Adler, P R, Wilcox, G E, Markhart, A H,III 1996Ammonium decreases muskmelon root system hydraulic conductivityJ. Plant Nutr.1913951403Google Scholar
  2. Aharon, R, Shahak, Y, Wininger, S, Bendov, R, Kapulnik, Y, Galili, G 2003Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stressPlant Cell15439447CrossRefPubMedGoogle Scholar
  3. Azaizeh, H, Gunse, B, Steudle, E 1992Effects of NaCl and CaCl2 on Water Transport across Root Cells of Maize (Zea mays L.) SeedlingsPlant Physiol.99886894PubMedGoogle Scholar
  4. Azaizeh, H, Steudle, E 1991Effects of salinity on water transport of excised maize (Zea mays L.) rootsPlant Physiol.9711361145PubMedGoogle Scholar
  5. Baiges, I, Schäffner, A R, Mas, A 2001Eight cDNA encoding putative aquaporins in Vitis hydbrid Richter-110 and their differential expressionJ. Exp. Bot.5219491951CrossRefPubMedGoogle Scholar
  6. Barrieu, F, Chaumon, F, Chrispeels, M J 1998High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maizePlant Physiol.11711531163CrossRefPubMedGoogle Scholar
  7. Barrowclough, D E, Peterson, C A, Steudle, E 2000Radial hydraulic conductivity along developing onion rootsJ. Exp. Bot.51547557CrossRefPubMedGoogle Scholar
  8. Barthes, L, Deléens, E, Bousser, A, Hoarau, J, Prioul, J-L 1996Xylem exudation is related to nitrate assimilation pathway in detopped maize seedlings: use of nitrate reductase and glutamine synthase inhibitors as toolsJ. Exp. Bot.47485495Google Scholar
  9. Biela, A, Grote, K, Otto, B, Hoth, S, Hederich, R, Kaldenhoff, R 1999The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury insensitive and permeable to glycerolPlant J.18565570CrossRefPubMedGoogle Scholar
  10. Birner, T P, Steudle, E 1993Effects of anaerobic conditions on water and solute relations, and on active-transport in roots of maize (Zea mays L.)Planta190474483CrossRefGoogle Scholar
  11. Bloom, A J, Zwieniecki, M A, Passioura, J B, Randall, L B, Holbrook, N M, St Clair, D A 2004Water relations under root chilling in a sensitive and tolerant tomato speciesPlant Cell Environ27971979CrossRefGoogle Scholar
  12. Carvajal, M, Cooke, D T, Clarkson, D T 1996Responses of wheat plants to nutrition deprivation may involve the regulation of water-channel functionPlanta199372381CrossRefGoogle Scholar
  13. Cabanero, F J, Martinez, V, Carvajal, M 2004Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake?Plant Sci.166443450Google Scholar
  14. Carvajal, M, Cerda, A, Martinez, V 2000Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity?New Phytol.145439447CrossRefGoogle Scholar
  15. Carvajal, M, Martinez, V, Alcaraz, F C 1999Physiological function of water channels as affected by salinity in roots of paprika pepperPhysiol. Plant.10595101CrossRefGoogle Scholar
  16. Chahine, M T 1992The hydrological cycle and its influence on climateNature3509373380Google Scholar
  17. Chaumont, F, Barrieu, F, Jung, R, Chrispeels, M J 2000Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activityPlant Physiol.12210251034CrossRefPubMedGoogle Scholar
  18. Chaumont, F, Barrieu, F, Wojcik, E, Chrispeels, M J, Jung, R 2001Aquaporins constitute a large and highly divergent protein family in maizePlant Physiol.12512061215CrossRefPubMedGoogle Scholar
  19. Chrispeels, M J, Morillon, R, Maurel, C, Gerbeau, P, Kjellbom, P, Johansson, I 2001Aquaporins in plants: structure, function, regulation and role in plant water relationsCurr Top Membr Aqaporins51277334Google Scholar
  20. Clarkson, D T, Carvajal, M, Henzler, T, Waterhouse, R N, Smyth, A J, Cooke, D T, Steudle, E. 2000Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stressJ. Exp. Bot.516170CrossRefPubMedGoogle Scholar
  21. Cochard, H, Martin, R, Gross, P, Bogeat-Triboulot, M B 2000Temperature effects on hydraulic conductance and water relations of Quercus robur LJ. Exp. Bot.5112551259CrossRefPubMedGoogle Scholar
  22. Colmer, T D 2003Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from rootsPlant Cell Environ.261736CrossRefGoogle Scholar
  23. Cruz, R T, Jordan, W R, Drew, M C 1992Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolour L following exposure to water deficitPlant Physiol.99203212PubMedGoogle Scholar
  24. Davies, W J, Rodriguez, J L, Fiscus, E L 1982Stomatal behaviour and water movement through roots of wheat plants treated with abscisic acidPlant Cell Environ.5485493Google Scholar
  25. Dodd, I C 2005Root-to-shoot signallingPlant Soil274251270CrossRefGoogle Scholar
  26. Dry, P R 1997Response of grapevines to partial drying of the root systemDoctoral Thesis University of AdelaideAustraliaGoogle Scholar
  27. Dry, P R, Loveys, B R 1998Factors influencing grapevine vigour and the potential for control with partial rootzone dryingAust. J. Grape Wine Res.4140148Google Scholar
  28. Dry, P R, Loveys, B R 1999Grapevine shoot growth and stomatal conductance are reduced when part of the root system is driedVitis38151156Google Scholar
  29. Dry, P R, Loveys, B R, During, H 2000Partial drying of the rootzone of grape I Transient changes in shoot growth and gas exchangeVitis3937Google Scholar
  30. Dubrovsky, J G, North, G B, Nobel, P S 1998Root growth developmental changes in the apex and hydraulic conductivity for Opuntia ficus-indica during droughtNew Phytol.1387582CrossRefGoogle Scholar
  31. During, H 1990Stomatal adaptation of grapevine leaves to water stressProceedings5th Int. Symp. Grapevine Breeding. Vitis Special Issue366370Google Scholar
  32. Eckert, M, Biela, A, Siefritz, F, Kaldenhoff, R 1999New aspects of plant aquaporin regulation and specificityJ. Exp. Bot.5015411545CrossRefGoogle Scholar
  33. Fennell, A, Markhart, A H 1998Rapid acclimation of root hydraulic conductivity to low temperatureJ. Exp. Bot.49879884CrossRefGoogle Scholar
  34. Fetter, K, Wilder, V, Moshelion, M, Chaumont, F 2004Interactions between plasma membrane aquaporins modulate their water channel activityPlant Cell16215228CrossRefPubMedGoogle Scholar
  35. Fizames, C, Munos, S, Cazettes, C, Nacry, P, Boucherez, J, Gaymard, F, Piquemal, D, Delorme, V, Commes, T, Doumas, P, Cooke, R, Marti, J, Sentenac, H, Gojon, A 2004The Arabidopsis root transcriptome by serial analysis of gene expressionGene identification using the genome sequence. Plant Physiol.1346780Google Scholar
  36. Foreman, J, Demidchik, V, Bothwell, J H F, Mylona, P, Miedema, H, Torres, M A, Linstead, P, Costa, S, Brownlee, C, Jones, J D G, Davies, J M, Dolan, L 2003Reactive oxygen species produced by NADPH oxidase regulate plant cell growthNature422442446CrossRefPubMedGoogle Scholar
  37. Frensch, J, Steudle, E 1989Axial and radial hydraulic resistance to roots of maize (Zea mays L.)Plant Physiol.91719726PubMedGoogle Scholar
  38. Gaspar, M, Bousser, A, Sissoeff, I, Roche, O, Hoarau, J, Mahe, A 2003Cloning and characterization of ZmPIP1–5b, and aquaporin transporting water and ureaPlant Sci.1652131CrossRefGoogle Scholar
  39. Gaspar, M, Sissoeff, I, Bousser, A, Roche, O, Mahe, A, Hoarau, J 2001Transient variations of water transfer induced by HgCl2 in excised roots of young maize plants: new data on the inhibition processAust. J. Plant Physiol.2811751186Google Scholar
  40. Gerbeau, P, Guclu, J, Ripoche, P, Maurel, C 1999Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutesPlant J.18577587CrossRefPubMedGoogle Scholar
  41. Gerbeau, P, Amodeo, G, Henzler, T, Santoni, V, Ripoche, P, Maurel, C 2002The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pHPlant J.307181CrossRefPubMedGoogle Scholar
  42. Gibbs, J, Turner, D W, Armstrong, W, Sivasithamparam, K, Greenway, H 1998Response to oxygen deficiency in primary maize rootsII. Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulic conductivity. Aust. J. Plant Physiol.25759763Google Scholar
  43. Gowing, D J G, Davies, W J, Jones, H G 1990A positive root-sourced signal as an indicator of soil drying in apple Malus×domestica BorkhJ. Exp. Bot.4115351540Google Scholar
  44. Guenther, J F, Chanmanivone, N, Galetovic, M P, Wallace, I S, Cobb, J A, Roberts, D M 2003Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signalsPlant Cell15981991CrossRefPubMedGoogle Scholar
  45. Guo, S, Brück, H, Sattelmacher, B 2002Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plantsPlant Soil239267275CrossRefGoogle Scholar
  46. Hartung, W, Sauter, A, Hose, E 2002Abscisic acid in the xylem, where does it come from where does it go to? JExp. Bot.532732Google Scholar
  47. Henzler, T., Steudle, E. 2000Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channelsJ. Exp. Bot.5120532066CrossRefPubMedGoogle Scholar
  48. Henzler, T, Waterhouse, R N, Smyth, A J, Carvajal, M, Cooke, D T, Schäffner, A R, Steudle, E, Clarkson, D T 1999Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicusPlanta2105060CrossRefPubMedGoogle Scholar
  49. Hill, AE, Shachar-Hill, B, Shachar-Hill, Y 2004What are aquaporins for?J. Membr. Biol.197132CrossRefPubMedGoogle Scholar
  50. Hoarau, J, Barthes, L, Bousser, A, Deleens, E, Prioul, J L 1996Effect of nitrate on water transfer across roots of nitrogen pre-starved maize seedlingsPlanta200405415CrossRefGoogle Scholar
  51. Hose, E, Clarkson, D T, Steudle, E, Schreiber, L, Hartung, W 2001The exodermis: a variable apoplastic barrierJ. Exp. Bot.5222452264CrossRefPubMedGoogle Scholar
  52. Hose, E, Steudle, E, Hartung, W 2000Abscisic acid and hydraulic conductivity of maize roots, a study using cell- and root-pressure probesPlanta211874882CrossRefPubMedGoogle Scholar
  53. Hukin, D, Doering-Saad, C, Thomas, C R, Pritchard, J 2002Sensitivity of cell hydraulic conductivity to mercury is coincident with symplasmic isolation and expression of plasmalemma aquaporin genes in growing maize rootsPlanta21510471056PubMedGoogle Scholar
  54. Javot, H, Lauvergeat, V, Santoni, V, Martin-Laurent, F, Guclu, J, Vinh, J, Heyes, J, Franck, K I, Schaffner, A R, Bouchez, D, Maurel, C 2003Role of a single aquaporin isoform in root water uptakePlant Cell15509522CrossRefPubMedGoogle Scholar
  55. Javot, H, Maurel, C 2002The role of aquaporins in root water uptakeAnn. Bot.90301313CrossRefPubMedGoogle Scholar
  56. Johnson, K D, Chrispeels, M J 1992Tonoplast-bound protein kinase phophorylates tonoplast intrinsic proteinPlant Physiol.10017871795PubMedGoogle Scholar
  57. Johanson, U, Karlsson, M, Johansson, I, Gustavsson, S, Sjövall, S, Fraysse, L, Weig, A R, Kjellbom, P 2001The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plantsPlant Physiol.12613581369CrossRefPubMedGoogle Scholar
  58. Johansson, I, Karlsson, M, Johanson, U, Larsson, C, Kjellbom, P 2000The role of aquaporins in cellular and whole plant water balanceBiochim. Biophys. Acta Biomembranes1465324342Google Scholar
  59. Johansson, I, Karlsson, M, Shukla, V K, Chrispeels, M J, Larsson, C, Kjellbom, P 1998Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylationPlant Cell10451459CrossRefPubMedGoogle Scholar
  60. Kaldenhoff, R, Grote, K, Zhu, J, Zimmeramann, U 1998Significance of plasmalemma aquaporins for water-transport in Arabidopsis thalianaPlant J.14121128CrossRefPubMedGoogle Scholar
  61. Kaldenhoff, R G, Kolling, A, Richter, G 1996Regulation of the Arabidopsis thaliana gene AthH2 PIP1bJ. Photochem. Photobiol.36351354Google Scholar
  62. Kamaluddin, M, Zwiazek, J J 2001Metabolic inhibition of root water flow in red-osier dogwood (Cornus stolonifera) seedlingsJ. Exp. Bot.52739745PubMedGoogle Scholar
  63. Kjellbom, P, Larsson, C, Johansson, I, Karlsson, M, Johanson, U 1999Aquaporins and water homeostasis in plantsTrends Plant Sci.4308314CrossRefPubMedGoogle Scholar
  64. Klok, E J, Wilson, I W, Wilson, D, Chapman, S C, Ewing, R M, Somerville, S C, Peacock, W J, Dolferus, R, Dennis, E S 2002Expression profile analysis of the low-oxygen response in Arabidopsis root culturesPlant Cell1424812494CrossRefPubMedGoogle Scholar
  65. Kriedemann P E and Goodwin I 2003 Regulated Deficit Irrigation and Partial Rootzone Drying Land & Water Australia, Canberra.Google Scholar
  66. Lee, S H, Singh, A P, Chung, G C, Ahn, S J, Noh, E K, Steudle, E 2004aExposure of roots of cucumber (Cucumis sativus) to low temperature severely reduces root pressure, hydraulic conductivity and active transport of nutrientsPhysiol. Plant.120413420CrossRefGoogle Scholar
  67. Lee, S H, Singh, A P, Chung, G C 2004bRapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transportJ. Exp. Bot.5517331741CrossRefGoogle Scholar
  68. Liu, L H, Ludewig, U, Gassert, B, Frommer, W B, Wirén, N 2003Urea transport by nitrogen-regulated tonoplast intrinsic proteins in ArabidopsisPlant Physiol.13312201228CrossRefPubMedGoogle Scholar
  69. Lo Gullo, M A, Nardini, A, Salleo, S, Tyree, M T 1998Changes in root hydraulic conductance (KR) of Olea oleaster seedlings following drought stress and irrigationNew Phytol.1402531CrossRefGoogle Scholar
  70. Lopez, F, Bousser, A, Sissoeff, I, Hoarau, J, Mahe, A 2004Characterization in maize of AmTIP2–3 a root-specific tonoplast intrinsic protein exhibiting aquaporin activityJ. Exp. Bot.55539541CrossRefPubMedGoogle Scholar
  71. Loveys, B, Stoll, M, Dry, P, McCarthy, M 1998Partial rootzone drying stimulates stress responses in grapevine to improve water use efficiency while maintaining crop yield and qualityAust. Grapegrower Winemaker114108113Google Scholar
  72. Lovisolo, C, Hartung, W, Schubert, A 2002Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevinesFunct. Plant Biol.2913491356Google Scholar
  73. Maathuis, F J M, Filatov, V, Herzyk, P, Krijger, G C, Axelsen, K B, Chen, S, Green, B J, Li, Y, Madagan, K L, Sanchez-Fernandez, R, Forde, B G, Palmgren, M G, Rea, P A, Williams, L E, Sanders, D, Amtmann, A 2003Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stressPlant J.35675692CrossRefPubMedGoogle Scholar
  74. Mariaux, J-B, Bockel, C, Salamini, F, Bartels, D 1998Dessication- and abscisic acid-responsive genes encoding major intrinisic proteins MIPs from the resurrection plant Craterostigma plantagineumPlant Mol. Biol.3810891099CrossRefPubMedGoogle Scholar
  75. Markhart, A H 1984Amelioration of chilling-induced water stress by abscisic acid-induced changes in root hydraulic conductancePlant Physiol.748183PubMedGoogle Scholar
  76. Markhart, A H, Fiscus, E L, Naylor, A W, Kramer, P J 1979Effect of temperature on water and ion transport in soybean and broccoli systemsPlant Physiol.648387PubMedGoogle Scholar
  77. Martre, P, Morillon, R, Barrieu, F, North, G B, Nobel, P S, Chrispeels, M J 2002Plasma membrane aquaporins play a significant role during recovery from water deficitPlant Physiol.13021012110CrossRefPubMedGoogle Scholar
  78. Martre, P, North, G B, Nobel, P S 2001Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewettingPlant Physiol.126352362CrossRefPubMedGoogle Scholar
  79. Maurel, C 1997Aquaporins and water permeability of plant membranes AnnuRev. Plant Physiol. Plant Mol. Biol.48399429Google Scholar
  80. Maurel, C, Javot, H, Lauvergeat, V, Gerbeau, P, Tournaire, C, Santoni, V, Heyes, J 2002Molecular physiology of aquaporins in plantsInt. Rev. Cytol.215105148PubMedGoogle Scholar
  81. Maurel, C, Kado, R T, Guern, J, Chrispeels, M J 1995Phophorylation regulates the water channels activity of the seed-specific aquaporin α-TIPEMBO J.1430283035PubMedGoogle Scholar
  82. Maurel, C, Reizer, J, Schroeder, J I, Chrispeels, M J 1993The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytesEMBO J.1222412247PubMedGoogle Scholar
  83. Melkonian, J, Yu, L-X, Setter, T L 2004Chilling responses of maize (Zea mays L.) seedlings: root hydraulic conductance, abscisic acid, and stomatal conductanceJ. Exp. Bot.5517511760CrossRefPubMedGoogle Scholar
  84. Mitchell P D and Goodwin I 1996 Manipulating tree growth. In Micro-irrigation of Vines and Fruit Trees. Eds. P D Mitchell and I Goodwin. pp. 29–34. Agmedia, East Melbourne.Google Scholar
  85. Moshelion M, Moran N and Chaumont F 2004 Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol. 135 (in press).Google Scholar
  86. Mori, I C, Schroeder, J I 2004Reactive oxygen species activation of plant Ca2+ channelsA signalling mechanism in polar growth, hormone transduction, stress signalling, and hypothetically mechanotransduction. Plant Physiol.135702708Google Scholar
  87. Munns, R, Passioura, J B 1984Hydraulic resistance of plantsIII. Effects of NaCl in Barley and Lupin. Aust. J. Plant Physiol.11351359Google Scholar
  88. Neales, T F, Masia, A, Zhang, J, Davies, W J 1989The effects of partially drying part of the root system of Helianthus annuus on the abscisic acid content of the roots xylem sap and leavesJ. Exp. Bot.4011131120Google Scholar
  89. Niemietz, C M, Tyerman, S D 1997Characterization of water channels in wheat root membrane vesiclesPlant Physiol.115561567PubMedGoogle Scholar
  90. Niemietz, C M, Tyerman, S D 2000Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodulesFEBS Lett.465110114CrossRefPubMedGoogle Scholar
  91. Niemietz, C M, Tyerman, S D 2002New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human originFEBS Lett.531443447CrossRefPubMedGoogle Scholar
  92. Nobel P S and North G B 1993 Rectifier-like behaviour of root-soil systems, new insights from desert succulents In Water deficits, Plant Responses from Cell to Community Eds. J A C Smith and H Griffiths pp. 163–176. BIOS Scientific Publishers Ltd, Oxford.Google Scholar
  93. Nobel, P S, Sanderson, J 1984Rectifier-like activities of roots of two desert succulentsJ. Exp. Bot.35727737Google Scholar
  94. North, G B, Nobel, P S 1991Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti AgavaceaeAm. J. Bot.78906915Google Scholar
  95. North, G B, Nobel, P S 1995Hydraulic conductivity of concentric root tissues of Agave deserti Engelm under wet and drying conditionsNew Phytol.1304757Google Scholar
  96. North, G B, Nobel, P S 1996Radial hydraulic conductivity of individual root tissues of Pountia ficus-indica L Miller as soil moisture variesAnn. Bot.77133142CrossRefGoogle Scholar
  97. North, G B, Martre, P, Nobel, P S 2004Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet dry and rewetted soilPlant Cell Environ.27219228CrossRefGoogle Scholar
  98. Oono, Y, Seki, M, Nanjo, T, Narusaka, M, Fujita, M, Satoh, R, Satou, M, Sakurai, T, Ishida, J, Akiyama, K, Iida, K, Maruyama, K, Satoh, S, Yamaguchi-Shinozaki, K, Shinozaki, K 2003Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microarrayPlant J.34868887CrossRefPubMedGoogle Scholar
  99. Oliviusson, P, Salaj, J, Hakman, I 2001Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies)Plant Mol. Biol.46289299CrossRefPubMedGoogle Scholar
  100. Passioura, J B 1984Hydraulic resistance of plantsI. Constant or variable. Aust. J. Plant Physiol.11333339Google Scholar
  101. Passioura, J B, Munns, R 1984Hydraulic resistance of plantsII. Effects of rooting medium, and time of day, in barley and lupin. Aust. J. Plant Physiol.11341350Google Scholar
  102. Passioura, J B, Tanner, C B 1984Oscillations in apparent hydraulic conductance of cotton plantsAust. J. Plant Physiol.12455461Google Scholar
  103. Preston, G M, Carroll, TP, Guggino, W B, Agre, P 1992Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 proteinScience256385387PubMedGoogle Scholar
  104. Quintero, J M, Fournier, J M, Benlloch, M 1999Water transport in sunflower root systems, effects of ABA, Ca2+ status and HgCl2 J. Exp. Bot.5016071612CrossRefGoogle Scholar
  105. Radin, J W, Eidenbock, M P 1984Hydraulic conductance as a factor limiting leaf expansion in phosphorus deficient cotton plantsPlant Physiol75372377PubMedGoogle Scholar
  106. Radin, J W, Mathews, M A 1989Water transport properties of cortical cells in roots of nitrogen- and phosphorus-deficient cotton seedlingsPlant Physiol.89264268CrossRefPubMedGoogle Scholar
  107. Ranathunge, K, Kotula, L, Steudle, E, Lafitte, R 2004Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic poresJ. Exp. Bot.55433447CrossRefPubMedGoogle Scholar
  108. Reinbott, T M, Blevins, D G 1999Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plantsPlant Soil209263273CrossRefGoogle Scholar
  109. Rivers, R L, Dean, R M, Chandy, G, Hall, J E, Roberts, D M, Zeidel, M L 1997Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomesJ. Biol. Chem.2721625616261CrossRefPubMedGoogle Scholar
  110. Santoni, V, Vinh, J, Pflieger, D, Sommerer, N, Maurel, C 2003A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant rootsBiochem. J.373289296CrossRefPubMedGoogle Scholar
  111. Sarda, X, Tousch, D, Ferrare, K, Cellier, F, Alcon, C, Dupuis, J M, Casse, F, Lamaze, T 1999Characterization of closely related δ-TIP genes encoding aquaporin wheat are differentially expressed in sunflower roots upon water deprivation through exposure to airPlant Mol. Biol.40179191CrossRefPubMedGoogle Scholar
  112. Sauter, A, Abrams, S R, Hartung, W 2002Structural requirements of abscisic acid (ABA) and its impact on water flow during radial transport of ABA analogues through maize rootsJ. Plant Growth Regul.215059CrossRefPubMedGoogle Scholar
  113. Sauter, A, Davies, W J, Hartung, W 2001The long-distance abscisic acid signal in the droughted plant, the fate of the hormone on its way from root to shootJ. Exp. Bot.5219911997CrossRefPubMedGoogle Scholar
  114. Schaffner, A R 1998Aquaporin function structure and expression, are there more surprises to surface in water relations?Planta204131139PubMedGoogle Scholar
  115. Schultz, H R 2003Differences in hydraulic architecture account for near isohydric and anisohydric behavious of two field-grown Vitis vinifera L cultivars during droughtPlant, Cell Environ.2613931405CrossRefGoogle Scholar
  116. Schraut, D, Ullrich, C I, Hartung, W 2004Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalizationJ. Exp. Bot.5516351641CrossRefPubMedGoogle Scholar
  117. Seki, M, Narusaka, M, Abe, H, Kasuga, M, Yamaguchi-Shinozaki, K, Carnini, P, Hayashizaki, Y, Shinozaki, K 2001Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarrayPlant Cell136172CrossRefPubMedGoogle Scholar
  118. Siefritz, F, Tyree, M T, Lovisolo, C, Schubert, A, Kaldenhoff, R 2002PIP1 plasma membrane aquaporins in tobacco, from cellular effects to function in plantsPlant Cell14869876CrossRefPubMedGoogle Scholar
  119. Siemens, J A, Zwiazek, J J 2003Effects of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlingsPlant Sci.165113120CrossRefGoogle Scholar
  120. Smart, L B, Moskal, W A, Cameron, K D, Bennett, A B 2001MIP genes are down-regulated under drought stress in Nicotiana glaucaPlant Cell Physiol.427686693Google Scholar
  121. Steudle, E 1993

    Pressure probe techniques, basic principles and application of studies of water and solute relations at the cell tissue and organ level

    Smith, J A CGriffiths, H eds. Water Deficits, Plant Responses from Cell to CommunityBIOS Scientific Publishers LtdOxford536
    Google Scholar
  122. Steudle, E 1994Water transport across rootsPlant Soil1677990CrossRefGoogle Scholar
  123. Steudle, E 2000aWater uptake by plant roots: an integration of viewsPlant Soil2264556CrossRefGoogle Scholar
  124. Steudle, E 2000bWater uptake by roots, effects of water deficitJ. Exp. Bot.5115311542CrossRefGoogle Scholar
  125. Steudle, E, Frensch, J 1996Water transport in plants, role of the apoplastPlant Soil1876779CrossRefGoogle Scholar
  126. Steudle, E, Meshcheryakov, A B 1996Hydraulic and osmotic properties of oak rootsJ. Exp. Bot.47387401Google Scholar
  127. Steudle, E, Peterson, C A 1998How does water get through roots? JExp. Bot.49775788Google Scholar
  128. Steudle, E, Tyerman, S D 1983Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity of Chara corallina using the pressure probe: effects of solute concentrationsJ. Membr. Biol.758596Google Scholar
  129. Stoll M 2000 Effects of partial rootzone drying on grapevine physiology and fruit quality. PhD Thesis University of Adelaide, Australia.Google Scholar
  130. Stoll, M, Loveys, B, Dry, P 2000Hormonal changes induced by partial rootzone drying of irrigated grapevineJ. Exp. Bot.5116271634CrossRefPubMedGoogle Scholar
  131. Suga, S, Komatsu, S, Maeshima, M 2002Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlingsPlant Cell Physiol.4312291237CrossRefPubMedGoogle Scholar
  132. Sui, H, Han, B-G, Lee, J K, Walian, P, Jap, B K 2001Structural basis of water-specific transport through the AQP1 water channelNature414872878CrossRefPubMedGoogle Scholar
  133. Tournaire-Roux, C, Sutka, M, Javot, H, Gout, E, Gerbeau, P, Luu, D T, Bligny, R, Maurel, C 2003Cytosolic pH regulates root water transport during anoxia stress through gating of aquaporinsNature425393397CrossRefPubMedGoogle Scholar
  134. Tsuda, M, Tyree, M T 2000Plant hydraulic conductance measured by the high pressure flow meter in crop plantsJ. Exp. Bot.51823828CrossRefPubMedGoogle Scholar
  135. Tyerman, S D, Bohnert, H J, Maurel, C, Steudle, E, Smith, J A C 1999Plant aquaporins, their molecular biology biophysics and significance for plant water relationsJ. Exp. Bot.5010551071CrossRefGoogle Scholar
  136. Tyerman, S D, Niemietz, C M, Bramley, H 2002Plant aquaporins: multifunctional water and solute channels with expanding rolesPlant Cell Environ125173194Google Scholar
  137. Tyerman, S D, Steudle, E 1982Comparison between osmotic and hydrostatic water flows in a higher-plant cell–determination of hydraulic conductivities and reflection coefficients in isolated epidermis of Tradescantia-virginianaAust. J. Plant Physiol.9461479CrossRefGoogle Scholar
  138. Tyree M T 2003 Hydraulic properties of roots. In Ecological Studies Vol. 168 Eds. H. de Kroon and E.J.W. Visser. pp. 125–150. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  139. Tyree, M T, Patino, S, Bennink, J, Alexander, J 1995Dynamic meausrements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and fieldJ. Exp. Bot.468394Google Scholar
  140. Uehlein, N, Lovisolo, C, Siefritz, F, Kaldenhoff, R 2003The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functionsNature425734736CrossRefPubMedGoogle Scholar
  141. Vartapetian, B B, Jackson, M B 1997Plant adaptations to anaerobic stressAnn. Bot.79220Google Scholar
  142. Vera-Estrella R, Barkla B J, Bohnert H J and Pantoja O 2004 Novel regulation of aquaporins during osmotic stress. Plant Physiol. 135 (in press).Google Scholar
  143. Vernieri, P, Lenzi, A, Figaro, M, Tognoni, F, Pardossi, A 2001How roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stressJ. Exp. Bot.5221992206PubMedGoogle Scholar
  144. Wan, X, Steudle, E, Hartung, W 2004Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses): effects of ABA and of HgCl2 J. Exp. Bot.55411422CrossRefPubMedGoogle Scholar
  145. Wan, X, Zwiazek, J J 2001Root water flow and leaf stomatal conductance in aspen (Populus tremuloides) seedlings treated with abscisic acidPlanta213741747CrossRefPubMedGoogle Scholar
  146. Wilkinson, S, Davies, W J 1997Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplastPlant Physiol.113559573PubMedGoogle Scholar
  147. Yamada, S, Komori, T, Myers, P N, Kuwata, S, Kubo, T, Imaseki, H 1997Expression of plasma membrane water channel genes under water stress in Nicotiana excelsiorPlant Cell Physiol.3812261231PubMedGoogle Scholar
  148. Ye, Q, Wiera, B, Steudle, E 2004A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentrationJ. Exp. Bot.55449461CrossRefPubMedGoogle Scholar
  149. Zeier, J, Schreiber, L 1997Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniataPlant Physiol.11312231231PubMedGoogle Scholar
  150. Zhang, J, Davies, WJ 1987Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leavesJ. Exp. Bot.3820152023Google Scholar
  151. Zhang, W-H, Tyerman, SD 1991Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of cortical cells of wheat rootsAust. J. Plant Phys.18603613Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Rebecca Vandeleur
    • 1
  • Christa Niemietz
    • 1
  • Joanne Tilbrook
    • 1
  • Stephen D. Tyerman
    • 1
  1. 1.Wine and Horticulture, School of Agriculture and WineThe University of AdelaideAustralia

Personalised recommendations