Plant and Soil

, Volume 273, Issue 1–2, pp 101–114

Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils

Article

Abstract

An improved integration of mycorrhizas may increase the sustainability in plant production. Two strategies for increasing the soil inoculum potential of mycorrhizal fungi were investigated in field experiments with leeks: Pre-cropping with mycorrhizal main crops and pre-establishment of mycorrhizal cover crops. Experiments on soils with moderate to high P content (26–50 mg kg−1 bicarbonate-extractable P) showed that the previous crop influenced mycorrhiza formation, uptake of P, Zn, and Cu, and early growth of leek seedlings. A cover crop of black medic, established the previous autumn, increased the colonization of leek roots by mycorrhizal fungi. During early growth stages, this increase was 45–95% relative to no cover crop. However, cover cropping did not significantly increase nutrient concentration or growth. These variables were not influenced by the time of cover crop incorporation or tillage treatments. Differences in colonization, nutrient uptake and plant growth diminished during the growing period and at the final harvest date, the effects on plant production disappeared. High soil P level or high soil inoculum level was most likely responsible for the limited response of increased mycorrhiza formation on plant growth and nutrient concentrations.

Keywords

Allium porrum arbuscular mycorrhiza cover crop crop rotation phosphorus zinc copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amijee, F, Tinker, P B, Stribley, D P 1989The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization.New Phytol.111435446Google Scholar
  2. Arihara, J, Karasawa, T 2000Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize.Soil Sci. Plant Nutr.464351Google Scholar
  3. Baltruschat, H, Dehne, H W 1988The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystems. I. Influence of nitrogen and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter wheat.Plant Soil.107279284Google Scholar
  4. Baylis, G T S 1972Minimum levels of available phosphorus for non-mycorrhizal plants.Plant Soil.36233234CrossRefGoogle Scholar
  5. Best, E K 1976An automated method for determining nitrate-nitrogen in soil extracts.Queensland J. Agric. Anim. Sci.33161166Google Scholar
  6. Black, R, Tinker, P B 1979The development of endomycorrhizal root systems II. Effect of agronomic factors and soil conditions on the development of vesicular-arbuscular mycorrhizal infection in barley and on the endophyte spore density.New Phytol.83401413Google Scholar
  7. Boswell, E P, Koide, R T, Shumway, D L, Addy, H D 1998Winter wheat cover cropping VA mycorrhizal fungi and maize growth and yield.Agric. Ecosyst. Environ.675565CrossRefGoogle Scholar
  8. Brewster, J L, Bhat, K K S, Nye, P H 1975The possibility of predicting solute uptake and plant growth response from independently measured soil and plant characteristics. II. The growth and uptake of onions in solutions of constant phosphate concentration.Plant Soil.42171195Google Scholar
  9. Burns, I G 1980Influence of the spatial distribution of nitrate on the uptake of N by plants: A review and a model for rooting depth.J. Soil Sci.31155173Google Scholar
  10. Bürkert, B, Robson, A 199465Zn uptake in subterranean clover (Trifolium subterraneum L.) by 3 vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil.Soil Biol. Biochem.2611171124CrossRefGoogle Scholar
  11. Cantrell, I C, Linderman, R G 2001Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity.Plant Soil.233269281CrossRefGoogle Scholar
  12. Crooke, W M, Simpson, W E 1971Determination of ammonium in Kjeldahl digest of crops by an automated procedure.J. Sci. Food Agric.22910Google Scholar
  13. Douds, D D, Reider, C 2003Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil.Biol. Agric. Hortic.2191102Google Scholar
  14. Evans, D G, Miller, M H 1988Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. I. Causal relations.New Phytol.1106774Google Scholar
  15. Fairchild, G L, Miller, M H 1988Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. II. Development of the effect.New Phytol.1107584Google Scholar
  16. Fontenla, S, Garcia-Romera, I, Ocampo, J A 1999Negative influence of non-host plants on the colonization of Pisum sativum by the arbuscular mycorrhizal fungus Glomus mosseae.Soil Biol. Biochem.3115911597CrossRefGoogle Scholar
  17. Galvez, L, Douds, D D, Drinkwater, L E, Wagoner, P 2001Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize.Plant Soil.228299308CrossRefGoogle Scholar
  18. Galvez, L, Douds, D D J, Wagoner, P, Longnecker, L R, Drinkwater, L E, Janke, R R 1995An overwintering cover crop increases inoculum of VAM fungi in agricultural soil.Am. J. Alternative Agric.10152156Google Scholar
  19. Gavito, M E, Miller, M H 1998Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize.Plant Soil.199177186CrossRefGoogle Scholar
  20. Goss, M J, Varennes, A 2002Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation.Soil Biol. Biochem.3411671173CrossRefGoogle Scholar
  21. Graham, J H, Eissenstat, D M 1998Field evidence for the carbon cost of citrus mycorrhizas.New Phytol.140103110CrossRefGoogle Scholar
  22. Grant, C A, Flaten, D N, Tomasiewicz, D J, Sheppard, S C 2001The importance of early season phosphorus nutrition.Can. J. Plant Sci.81211224Google Scholar
  23. Grant, R, Laubel, A, Kronvang, B, Andersen, H E, Svendsen, L M, Fuglsang, A 1996Loss of dissolved and particulate phosphorus from arable catchments by subsurface drainage.Water Res.3026332642CrossRefGoogle Scholar
  24. Hamel, C, Dalpe, Y, Furlan, V, Parent, S 1997Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L.) response to inoculation with Glomus intraradices Schenck and Smith or Glomus versiforme(Karsten) Berch.Mycorrhiza.7187196CrossRefGoogle Scholar
  25. Hansen, B 1989Determination of nitrogen as elementary N, an alternative to Kjeldahl.Acta Agric. Scand.39113118Google Scholar
  26. Harley, J L, Harley, E L 1987A check-list of mycorrhiza in the British flora.New Phytol.1051102Google Scholar
  27. Hayman, D S, Johnson, A M, Ruddlesdin, I 1975The influence of phosphate and crop species on Endogone spores and vesicular-arbuscular mycorrhiza under field conditions.Plant Soil.43489495Google Scholar
  28. Hepper, C M 1983The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce.New Phytol.93389399Google Scholar
  29. Hooker, J E, Black, K E 1995Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems.Crit. Rev. Biotechnol.15201212Google Scholar
  30. Jakobsen, I 1995

    Transport of phosphorus and carbon in VA mycorrhizas.

    Varma, AHock, B eds. Mycorrhiza.Springer-VerlagBerlin, Heidelberg297324
    Google Scholar
  31. Jakobsen, I, Abbott, L, Robson, A D 1992External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal uptake of 32P over defined distances.New Phytol.120509526Google Scholar
  32. Jensen, A 1982Influence of 4 vesicular-arbuscular mycorrhizal fungi on nutrient-uptake and growth in barley (Hordeum vulgare).New Phytol.904550Google Scholar
  33. Jungk, A, Barber, S A 1975Plant age and the phosphorus uptake characteristics of trimmed and untrimmed corn root systems.Plant Soil.42227239Google Scholar
  34. Kabir, Z, Koide, R T 2000The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize.Agric. Ecosyst. Environ.78167174CrossRefGoogle Scholar
  35. Kabir, Z, O’Halloran, I P, Fyles, J W, Hamel, C 1998Dynamics of the mycorrhizal symbiosis of corn (Zea mays L.): Effects of host physiology, tillage practice and fertilization on spatial distribution of extra-radical mycorrhizal hyphae in the field.Agric. Ecosyst. Environ.68151163CrossRefGoogle Scholar
  36. Kahiluoto, H, Ketoja, E, Vestberg, M, Saarela, I 2001Promotion of AM utilization through reduced P fertilization 2.Field studies.Plant Soil2316579Google Scholar
  37. Karasawa, T, Kasahara, Y, Takebe, A 2002Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi.Soil Biol. Biochem.34851857CrossRefGoogle Scholar
  38. Koide, R T 1991Nutrient supply, nutrient demand and plant response to mycorrhizal infection.New Phytol.117365386Google Scholar
  39. Lu, S, Miller, M H 1989The role of VA mycorrhizae in the absorption of P and Zn by maize in field and growth chamber experiments.Can. J. Soil Sci.6997109Google Scholar
  40. McGonigle, T P, Evans, D G, Miller, M H 1990Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments.New Phytol.116629636Google Scholar
  41. McGonigle, T P, Fitter, A H 1988Growth and phosphorus inflows of Trifolium repens L. with a range of indigenous vesicular-arbuscular mycorrhizal infection levels under field conditions.New Phytol.1085965Google Scholar
  42. McGonigle, T P, Miller, M H 1993Responses of mycorrhizae and shoot phosphorus of maize to the frequency and timing of soil disturbance.Mycorrhiza.46368CrossRefGoogle Scholar
  43. Miller, M H 2000Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studies.Can. J. Plant Sci.804752Google Scholar
  44. Milner, B A, Whiteside, P J 1981Introduction to Atomic Absorption Spectrophotometry.Pue Unicam Ldt.Cambridge, EnglandGoogle Scholar
  45. Mozafar, A, Anken, T, Ruh, R, Frossard, E 2000Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola.Agron. J.9211171124Google Scholar
  46. Olsen, J K, Schaefer, J T, Edwards, D G, Hunter, M N, Galea, V J, Muller, L M 1999Effects of mycorrhizae, established from an existing intact hyphal network, on the growth response of capsicum (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.) to five rates of applied phosphorus.Aus. J. Agric. Res.50223237Google Scholar
  47. Olsen SR, Cole CV, Watanabe FS and Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U. S. D. A. Circular 939.Google Scholar
  48. Phillips, J M, Hayman, D S 1970Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.Tran. Br. Mycol. Soc.55158160Google Scholar
  49. Powell, C L 1982Effects of kale and mustard crops on response of white clover to VA mycorrhizal inoculation in pot trials New Zealand.J. Agric. Res.25461464Google Scholar
  50. Ryan, M H, Angus, J F 2003Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield.Plant Soil.250225239CrossRefGoogle Scholar
  51. Ryan, M H, Graham, J H 2002Is there a role for arbuscular mycorrhizal fungi in production agriculture.Plant Soil244263271Google Scholar
  52. SAS Institute Inc.(1989) SAS/STAT User’s Guide. Version 6, Fourth edn., Volume 2, SAS Institute Inc., Cary NC USA.Google Scholar
  53. Sasa, M, Zahka, G, Jakobsen, I 1987The effect of pretransplant inoculation with VA mycorrhizal fungi on the subsequent growth of leeks in the field.Plant and Soil.97279283Google Scholar
  54. Schweiger, P F, Robson, A D, Barrow, N J 1995Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species.New Phytol.131247254Google Scholar
  55. Smit, A L, Booij, R, Vander Werf, A 1996The spatial and temporal rooting pattern of Brussels sprouts and leeks.Netherlands J. Agric. Sci.445772Google Scholar
  56. Smith, S E, St. John, B J, Smith, F A, Bromley, J L 1986Effects of mycorrhizal infection on plant growth, nitrogen and phosphorus nutrition in glasshouse-grown Allium cepa L.New Phytol.103359373Google Scholar
  57. Sorensen, J N 1993Use of the Nmin-method for optimization of vegetable nitrogen nutrition.Acta Hortic.339179192Google Scholar
  58. Sorensen, J N 2000Ontogenetic changes in macro nutrient composition of leaf-vegetable crops in relation to plant nitrogen status: A review.J. Vege. Crop Product.67596CrossRefGoogle Scholar
  59. Stribley, D P, Tinker, P B, Snellgrove, R C 1980Effect of vesicular-arbuscular mycorrhizal fungi on the relations of plant growth, internal phosphorus concentration and soil phosphate analysis.J. Soil Sci.31655672Google Scholar
  60. Stuffins, C B 1967Determination of phosphate and calcium in feeding stuffs.Analyst.92107111CrossRefPubMedGoogle Scholar
  61. Thompson, J P 1994Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes long-fallow disorder of linseed (Linum usitatissimum L.) by improving P and Zn uptake.Soil Biol. Biochem.2611331146CrossRefGoogle Scholar
  62. Tinker, P B, Jones, M D, Durall, D M 1992

    A functional comparison of ecto- and endomycorrhizas.

    Read, D JLewis, D HFitter, A HAlexander, I J eds. Mycorrhizas in Ecosystems.CAB InternationalWellingford, UK303310
    Google Scholar
  63. Zak, J C, McMichael, B, Dhillion, S, Friese, C 1998Arbuscular-mycorrhizal colonization dynamics of cotton (Gossypium hirsutum L.) growing under several production systems on the Southern High Plains, Texas.Agric. Ecosyst. Environ.68245254CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of HorticultureDanish Institute of Agricultural SciencesAarslevDenmark
  2. 2.Department of Crop ProtectionJ. LarsenSlagelseDenmark
  3. 3.Plant Research DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations