Plant and Soil

, Volume 273, Issue 1–2, pp 91–99

Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide

  • Júlia Kuklinsky-Sobral
  • Welington Luiz Araújo
  • Rodrigo Mendes
  • Aline Aparecida Pizzirani-Kleiner
  • João Lúcio Azevedo


Endophytic bacteria are ubiquitous in most plant species influencing the host fitness by disease suppression, contaminant degradation, and plant growth promotion. This endophytic bacterial community may be affected by crop management such as the use of chemical compounds. For instance, application of glyphosate herbicide is common mainly due to the use of glyphosate-resistant transgenic plants. In this case, the bacterial equilibrium in plant–endophyte interaction could be shifted because some microbial groups are able to use glyphosate as a source of energy and nutrients, whereas this herbicide may be toxic to other groups. Therefore, the aim of this work was to study cultivable and noncultivable endophytic bacterial populations from soybean (Glycine max) plants cultivated in soil with and without glyphosate application (pre-planting). The cultivable endophytic bacterial community recovered from soybean leaves, stems, and roots included Acinetobacter calcoaceticus, A. junii, Burkholderiasp., B. gladioli, Enterobacter sakazaki, Klebsiella pneumoniae, Pseudomonas oryzihabitans, P. straminea, Ralstonia pickettii,and Sphingomonassp. The DGGE (Denaturing Gradient Gel Electrophoresis) analysis from soybean roots revealed some groups not observed by isolation that were exclusive for plants cultivated in soil with pre-planting glyphosate application, such as Herbaspirillum sp., and other groups in plants that were cultivated in soil without glyphosate, such as Xanthomonas sp. and Stenotrophomonas maltophilia. Furthermore, only two bacterial species were recovered from soybean plants by glyphosate enrichment isolation. They were Pseudomonas oryzihabitans and Burkholderia gladioliwhich showed different sensibility profiles to the glyphosate. These results suggest that the application at pre-planting of the glyphosate herbicide may interfere with the endophytic bacterial community’s equilibrium. This community is composed of different species with the capacity for plant growth promotion and biological control that may be affected. However, the evaluation of this treatment in plant production should be carried out by long-term experiments in field conditions.


bacteria–plant interaction Burkholderia gladioli DGGE endophytic bacteria glyphosate Pseudomonas oryzihabitans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araújo, A S F, Monteiro, R T R, Abarkeli, R B 2003Effect of glyphosate on the microbial activity of two Brazilian soilsChemosphere52799804CrossRefPubMedGoogle Scholar
  2. Araújo, W L, Maccheroni, W,Jr, Aguilar-Vildoso, C I, Barroso, P A V, Saridakis, H O, Azevedo, J L 2001Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocksCan. J. Microbiol.47229236CrossRefPubMedGoogle Scholar
  3. Araújo, W L, Marcon, J, Maccheroni, W,Jr, Elsas, J D, Vuurde, J W L, Azevedo, J L 2002Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plantsAppl. Environ. Microb.6849064914CrossRefGoogle Scholar
  4. Azevedo J L, Maccheroni Jr W, Pereira J O and Araújo W L 2000 Endophytic microorganism: A review on insect control and recent advances on tropical plants. Electron. J. Biotechno. [on line]. Vol. 3, no. 1. Available from ISSN 0717–3458.Google Scholar
  5. Belimov, A A, Safronova, V I, Sergeyeva, T A, Egorova, T N, Matveyeva, V A, Tsyganov, V E, Borisov, A Y, Tikhonovich, I A, Kluge, C, Preisfeld, A, Dietz, K J, Stepanok, V V 2001Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1- aminocyclopropane-1-carboxylate deaminaseCan. J. Microbiol.47642652CrossRefPubMedGoogle Scholar
  6. Busse, M D, Ratcliff, A W, Shestak, C J, Powers, R F 2001Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communitiesSoil Biol. Biochem.3317771789CrossRefGoogle Scholar
  7. Chen, C, Bauske, E M, Musson, G, Rodriguezkabana, R, Kloepper, J W 1995Biological control of Fusarium wilt on cotton by use of endophytic bacteriaBiol. Control.58391CrossRefGoogle Scholar
  8. Chiou, A L, Wu, W S 2001Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lyliJ. Phytopathol.149319324CrossRefGoogle Scholar
  9. Dalmastri, C, Chiarini, L, Cantale, C, Bevivino, A, Tabacchiono, S 1999Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populationsMicrobial Ecol.38273284CrossRefGoogle Scholar
  10. Dick, R E, Quinn, J P 1995Glifosato-degrading isolates from environmental samples: Occurrence and pathways of degradationAppl. Microbiol. Biotechnol.43545550CrossRefPubMedGoogle Scholar
  11. Dussart, L, Dupont, J P, Zimmerlin, I, Lacroix, M, Saiter, J M, Junter, G A, Jouenne, T 2003Occurrence of sessile Pseudomonas oryzihabitans from a karstied chalk aquiferWater Res.3715931600CrossRefPubMedGoogle Scholar
  12. Dworkin, M, Foster, J W 1958Experiments with some microorganisms which utilize ethane and hydrogenJ. Bacteriol.75592601PubMedGoogle Scholar
  13. Garbeva, P, Overbeek, L S, Vuurde, JWL, Van Elsas, JD 2001Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragmentsMicrobial Ecol.41369383Google Scholar
  14. Heydari, A, Misagui, I J 1998Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soilsPlant Soil202109116CrossRefGoogle Scholar
  15. Heydari, A, Misagui, I J, Mccloskey, W B 1997Effects of three soil-applied herbicides on populations of plant disease suppressing bacteria in the cotton rhizospherePlant Soil1957581CrossRefGoogle Scholar
  16. Huang, Y, Wong, P T W 1998Effect of Burkholderia (Pseudomonas) cepacia and soil type on the control of crown rot in wheatPlant Soil203103108CrossRefGoogle Scholar
  17. Kuklinsky-Sobral, J, Araújo, W L, Mendes, R, Geraldi, I O, Pizzirani-Kleiner, A A, Azevedo, J L 2004Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotionEnviron. Microbiol.612441251CrossRefPubMedGoogle Scholar
  18. Lacava, P T, Araújo, W L, Marcon, J, Maccheroni, W,Jr, Azevedo, J L 2004Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa,causal agent of citrus-variegated chlorosisLett. Appl. Microbiol.395559CrossRefPubMedGoogle Scholar
  19. Levesque, C A, Rahe, J E 1992Herbicide interactions with fungal root pathogens, with special reference to glyphosateAnnu. Rev. Phytopathol.30579602CrossRefGoogle Scholar
  20. Mocali, S, Bertelli, E, Celli, F D, Mengoni, A, Sfalanga, A, Vilani, F, Caciotti, A, Tegli, S, Surico, G, Fani, R 2003Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organsRes. Microbiol.154105114CrossRefPubMedGoogle Scholar
  21. Muyzer, G, Waal, E C, Uitterlinden, A 1993Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNAAppl. Environ. Microbiol59695700PubMedGoogle Scholar
  22. Oehrle, N W, Karr, D B, Kremer, R J, Emerich, D W 2000Enhanced attachment of Bradyrhizobium japonicum to soybean through reduced root colonization of internally seedborne microorganismsCan. J. Microbiol.46600606CrossRefPubMedGoogle Scholar
  23. Penazola-Vazquez, A, Mena, G L, Herrera-Estrella, L, Bailey, A M 1995Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomalleiAppl. Environ. Microbiol61538543PubMedGoogle Scholar
  24. Sambrook, J, Fritsch, E F, Maniatis, T 1989Molecular Cloning: A Laboratory Manual2Cold Spring Harbor Laboratory PressNew YorkGoogle Scholar
  25. Santos, A, Flores, M 1995Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteriaLett. Appl. Microbiol.2034935Google Scholar
  26. Steel, R G D, Torrie, J H 1980Principles and Procedures of Statistics: A Biometrical ApproachMcGraw-HillToronto, Ontario, CanadaGoogle Scholar
  27. Shimosaka, M, Fukumori, Y, Zhang, X Y, He, N J, Kodaria, R, Okazaki, M 2000Molecular cloning and characterization of a chitosanase from the chitosanolytic bacterium Burkholderia gladioli strain CHB101Appl. Microbiol. Biotechnol.54354360CrossRefPubMedGoogle Scholar
  28. Sturz, A V, Christie, B R, Nowak, J 2000Bacterial endophytes: Potential role in developing sustainable systems of crop productionCRC C.R. Rev. Plant Sci.19130CrossRefGoogle Scholar
  29. Trân Van, V, Berge, O, Ngô Kê, S, Balandreau, J, Heulin, T 2000Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensison early and late yield components in low fertility sulphate acid soils of VietnamPlant Soil218273284CrossRefGoogle Scholar
  30. Yap I and Nelson R J 1996 Winboot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion Paper Series 14.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Júlia Kuklinsky-Sobral
    • 1
  • Welington Luiz Araújo
    • 1
  • Rodrigo Mendes
    • 1
  • Aline Aparecida Pizzirani-Kleiner
    • 1
  • João Lúcio Azevedo
    • 1
    • 2
  1. 1.Departamento de Genética, Escola Superior de Agricultura ‘Luiz de QueirozUniversity of São PauloSão PauloBrazil
  2. 2.Núcleo Integrado de BiotecnologiaUniversity of Mogi das CruzesSão PauloBrazil

Personalised recommendations