Plant and Soil

, Volume 272, Issue 1–2, pp 29–40 | Cite as

Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein

  • M. JanouškováEmail author
  • D. Pavlíková
  • T. Macek
  • M. Vosátka


The effect of arbuscular mycorrhiza (AM) on the phytoextraction efficiency of transgenic tobacco with increased ability to tolerate and accumulate cadmium (Cd) was tested in a pot experiment. The tobacco plants bearing the yeast metallothionein CUP1 combined with a polyhistidine cluster were compared to non-transgenic tobacco of the same variety at four Cd concentrations in soil, non-inoculated or inoculated with two isolates of the AM fungus Glomus intraradices. Mycorrhizal inoculation improved the growth of both the transgenic and non-transgenic tobacco and decreased Cd concentrations in shoots and root to shoot translocation. Differences were found between the two AM fungal isolates: one isolate supported more efficient phosphorus uptake and plant growth in the soil without Cd addition, while the other isolate alleviated the inhibitory effect of cadmium on plant growth. The resulting effect of inoculation on Cd accumulation was dependent on Cd level in soil and differed between the more Cd tolerant transgenic plants and the less tolerant non-transgenic plants. Mycorrhiza mostly decreased the phytoextraction efficiency of transgenic plants while increased that of non-transgenic plants at Cd levels in soil inhibitory to tobacco growth. Mechanisms of the observed effects of inoculation on growth and Cd uptake are discussed as well as the possible implications of the results for the exploitation of AM in phytoextraction of heavy metals from contaminated soils.


CUP1 gene Glomus heavy metals soil microflora 



arbuscular mycorrhiza


extraradical mycelium


transgenic tobacco


heavy metal


non-transgenic tobacco


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chaudhry, TM, Hayes, WJ, Khan, AG., Khoo, CS. 1998Phytoremediation – focusing on accumulator plants that remediate metal-contaminated soilsAustralas. J. Ecotox.43751Google Scholar
  2. Cunningham, SD, Berti, WT., Huang, JW. 1995Phytoremediation of contaminated soilsTIBTECH13393397Google Scholar
  3. Díaz, G, Azcón-Aguilar, C., Honrubia, M. 1996Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoidesPlant Soil180241249Google Scholar
  4. Dueck, TA, Visser, P, Ernst, WHO., Schat, H. 1986Vesicular–arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soilSoil Biol. Biochem.18331333Google Scholar
  5. Elmayan, T., Tepfer, M. 1994Synthesis of a bifunctional metallothionein/beta-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levelsPlant J.6433440PubMedGoogle Scholar
  6. Ernst, WHO. 1996Bioavailability of heavy metals and decontamination of soils by plantsAppl. Geochem.11163167Google Scholar
  7. Gildon, A., Tinker, PB. 1981A heavy metal tolerant strain of a mycorrhizal fungusTrans. Br. Mycol. Soc.77648649Google Scholar
  8. Giovannetti, M., Mosse, B. 1980An evaluation of techniques to measure vesicular-arbuscular infection in rootsNew Phytol.84489500Google Scholar
  9. Gonzalez-Chavez, C, D’Haen, J, Vangronsveld, J., Dodd, JC. 2002Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soilPlant Soil240287297Google Scholar
  10. Guo, Y, George, E., Marschner, H. 1996Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plantsPlant Soil184195205Google Scholar
  11. Hasegawa, I, Terada, E, Sunairi, M, Wakita, H, Shinmachi, F, Noguchi, A, Nakajima, M., Yakezi, J. 1997Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1)Plant Soil196277281CrossRefGoogle Scholar
  12. Haselwandter K, Leyval C., Sanders FE. (1994). Impact of arbuscular mycorrhizal fungi upon plant uptake of heavy metals and radionucleides from soil. In Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. Eds. S Gianinazzi and H Schüepp, pp. 179–190, Birkhäuser, BaselGoogle Scholar
  13. Hattori, J, Labbe, H., Miki, BL. 1994Construction and expression of a metallothionein beta-glucuronidase gene fusionGenome37508512PubMedGoogle Scholar
  14. Heggo, A., Angle, JS. 1990Effects of vesicular–arbuscular mycorrhizal fungi on heavy metal uptake by soybeansSoil Biol. Biochem.22865869Google Scholar
  15. Hetrick, BAD, Wilson, GWT., Figge, DAH. 1994The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoilEnviron. Pollut.86171179PubMedGoogle Scholar
  16. Hildebrandt, U, Kaldorf, M., Bothe, H. 1999The zinc violet and its colonization by arbuscular mycorrhizal fungiJ. Plant Physiol.154709717Google Scholar
  17. Jakobsen, I, Abbott, LK., Robson, AD. 1992External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneumL. 1. Spread of hyphae and phosphorus inflow into rootsNew Phytol.120371380Google Scholar
  18. Jeffries, P, Gianinazzi, S, Perotto, S, Turnau, K., Barea, J-M. 2003The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertilityBiol. Fertil. Soils37116Google Scholar
  19. Joner, EJ., Leyval, C. 1997Uptake of 190Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmiumNew Phytol.135353360Google Scholar
  20. Joner, EJ, Briones, R., Leyval, C. 2000Metal-binding capacity of arbuscular mycorrhizal myceliumPlant Soil226227234Google Scholar
  21. Kaldorf, M, Kuhn, AJ, Schröder, WH, Hildebrandt, U., Bothe, H. 1999Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhiza fungusJ. Plant Physiol.154718728Google Scholar
  22. Keller, C, Hammer, D, Kayser, A, Richner, W, Brodbeck, M., Sennhauser, M. 2003Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the fieldPlant Soil2496781CrossRefGoogle Scholar
  23. Khan, AG, Kuek, C, Chaudhry, TM, Khoo, CS., Hayes, WJ. 2000Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediationChemosphere41197207PubMedGoogle Scholar
  24. Killham, K., Firestone, MK. 1983Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositionsPlant Soil723948Google Scholar
  25. Koske, RE., Gemma, JN. 1989A modified procedure for staining roots to detect VA mycorrhizasMycol. Res.92486505Google Scholar
  26. Kotrba, P, Macek, T., Ruml, T. 1999Heavy-metal binding peptides and proteins in plantsColl. Czech Chem. Commun.6410571086Google Scholar
  27. Krämer, U., Chardonnens, AN. 2001The use of transgenic plants in the bioremediation of soils contaminated with trace elementsAppl. Microbiol. Biot.55661672Google Scholar
  28. Kumar, PBAN, Dushenkov, V, Motto, H., Raskin, I. 1995Phytoextraction: The use of plants to remove heavy metals from soilsEnviron. Sci. Technol.1912321238Google Scholar
  29. Leyval, C, Turnau, K., Haselwandter, K. 1997Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspectsMycorrhiza7139153Google Scholar
  30. Linsmeier, EM, Skoog, F. 1965Organic growth factor requirement of tobacco tissue culturesPhysiol. Plant18100127Google Scholar
  31. Loth, F-G., Höfner, W. 1994Einfluß der VA-Mykorrhiza auf die Schwermetallaufnahme von Hafer (Avena sativaL.) in Abhängigkeit vom Kontaminationsgrad der BödenZ. Pflanzenernaehr. Bodenk.158339345Google Scholar
  32. Macek, T, Francova, K, Kochankova, L, Loveck, P, Ryslava, E, Rezek, J, Sura, M, Triska, J, Demnerova, K., Mackova, M. 2004Phytoremediation – biological cleaning of polluted environmentRev. Environ. Health196382PubMedGoogle Scholar
  33. Macek, T, Macková, M, Pavlíková, D, Száková, J, Truksa, M, Singh-Cundy, A, Kotrba, P, Yancey, N., Scouten W, H. 2002Accumulation of cadmium by transgenic tobaccoActa Biotechnol.22101106Google Scholar
  34. Maiti, IB, Wagner, GJ, Yeargan, R., Hunt, AG. 1989Inheritance and expression of the mouse metallothionein gene in tobaccoImpact on Cd tolerance and tissue Cd distribution in seedlings. Plant Physiol.9110201024Google Scholar
  35. Malcová, R, Vosátka, M., Gryndler, M. 2003Effects of inoculation with Glomus intraradices on lead accumulation by Zeas maysL. andAgrostis capillaris LAppl. Soil Ecol.646113Google Scholar
  36. Malcová, R, Rydlová, J., Vosátka, M. 2003Metal-free cultivation of Glomus sp. BEG140 isolated from Mn-contaminated soil reduces tolerance to MnMycorrhiza13151157PubMedGoogle Scholar
  37. McGrath, SP, Zhao, FJ., Lombi, E. 2001Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soilsPlant Soil232207214CrossRefGoogle Scholar
  38. Meharg, AA., Cairney, JWG. 2000Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environmentsAdv. Ecol. Res.3069112Google Scholar
  39. Novozámský, J, Lexmond, TM, Houba, VJG. 1993A single extraction procedure of soil for evaluation of uptake of some heavy metals by plantsInt. J. Environ. Anal. Chem.514758Google Scholar
  40. Pavlíková, D, Macek, T, Macková, M, Száková, J., Balík, J. 2004Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tailInt. Biodeter. Biodegrad.54233237Google Scholar
  41. Perotto, S., Martino, E. 2001Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation?Minerva Biotecnol.135563Google Scholar
  42. Ricken, B., Höfner, W. 1995Bedeutung der arbuskulären Mykorrhiza (AM) für die Schwermetalltoleranz von Luzerne (Medicago sativa L.) und Hafer (Avena sativa L.) auf einem klärschlammgedüngten BodenZ. Pflanzenernaehr. Bodenk.159189194Google Scholar
  43. Rivera-Becerril, F, Calantzis, C, Turnau, K, Caussane, J-P, Belimov, AA, Gianinazzi, S, Strasser, RJ., Gianinazzi-Pearson, V. 2002Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypesJ. Exp. Bot.5311771185PubMedGoogle Scholar
  44. Smith, SE., Read, DJ. 1997Mycorrhizal SymbiosisThe University PressCambridge605Google Scholar
  45. Thomas, JC, Davies, EC, Malick, FK, Endreszl, C, Williams, CR, Abbas, M, Petrella, S, Swisher, K, Perron, M, Edwards, R, Ostenkowski, P, Urbanczyk, N, Wiesend, WN., Murray, KS. 2003Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soilsBiotechnol. Progr.19273280Google Scholar
  46. Turnau, K, Kottke, I., Oberwinkler, F. 1993Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dustNew Phytol.123313324Google Scholar
  47. Vidal MT, Azcón-Aguilar C., Barea JM. (1996). Effect of heavy metals (Zn, Cd and Cu) on arbuscular mycorrhiza formation. In Mycorrhizas in Integrated Systems: From Genes to Plant Development. Eds. C Azcon-Aguilar and J␣M Barea. pp. 452–454. European Commission EUR 167288, LuxembourgGoogle Scholar
  48. Weissenhorn, I., Leyval, C. 1995Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culturePlant Soil175233238Google Scholar
  49. Weissenhorn, I, Leyval, C., Berthelin, J. 1993Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soilsPlant Soil157247256Google Scholar
  50. Weissenhorn, I, Leyval, C, Belgy, G., Berthelin, J. 1995Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soilMycorrhiza5245251Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M. Janoušková
    • 1
    Email author
  • D. Pavlíková
    • 2
  • T. Macek
    • 3
  • M. Vosátka
    • 1
  1. 1.Department of Mycorrhizal Symbioses, Institute of BotanyAcademy of Sciences of the Czech RepublicCzech Republic
  2. 2.Department of Agrochemistry and Plant NutritionCzech University of AgriculturePragueCzech Republic
  3. 3.Department of Natural Products, Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations