Advertisement

Plant and Soil

, Volume 274, Issue 1–2, pp 101–125 | Cite as

Cluster Roots: A Curiosity in Context

  • Michael W. Shane
  • Hans Lambers
Article

Abstract

Cluster roots are an adaptation for nutrient acquisition from nutrient-poor soils. They develop on root systems of a range of species belonging to a number of different families (e.g., Proteaceae, Casuarinaceae, Fabaceae and Myricaceae) and are also found on root systems of some crop species (e.g., albus, Macadamia integrifoliaandCucurbita pepo). Their morphology is variable but typically, large numbers of determinate branch roots develop over very short distances of main root axes. Root clusters are ephemeral, and continually replaced by extension of the main root axes. Carboxylates are released from cluster roots at very fast rates for only a few days during a brief developmental window termed an ‘exudative burst’. Most of the studies of cluster-root metabolism have been carried out using the crop plant L. albus, but results on native plants have provided important additional information on carbon metabolism and exudate composition. Cluster-root forming species are generally non-mycorrhizal, and rely upon their specialised roots for the acquisition of phosphorus and other scarcely available nutrients. Phosphorus is a key plant nutrient for altering cluster-root formation, but their formation is also influenced by N and Fe. The initiation and growth of cluster roots is enhanced when plants are grown at a very low phosphate supply (viz. ≤1 μM P), and cluster-root suppression occurs at relatively higher P supplies. An important feature of some Proteaceae is storage of phosphorus in stem tissues which is associated with the seasonality of cluster-root development and P uptake (winter) and shoot growth (summer), and also maintains low leaf [P]. Some species of Proteaceae develop symptoms of P toxicity at relatively low external P supply. Our findings with Hakea prostrata (Proteaceae) indicate that P-toxicity symptoms result after the capacity of tissues to store P is exceeded. P accumulation in H. prostrata is due to its strongly decreased capacity to down-regulate P uptake when the external P supply is supra-optimal. The present review investigates cluster-root functioning in (1) L.albus (white lupin), the model crop plant for cluster-root studies, and (2) native Proteaceae that have evolved in phosphate-impoverished environments.

Keywords

alternative oxidase carboxylates citrate mineral nutrition phosphoenolpyruvate carboxylase phosphorus proteoid roots rhizosphere root exudation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M A, Bell, T L, Pate, J S 2002Phosphorus sources and availability modify growth and distribution of root clusters and nodules of native Australian legumesPlant Cell Environ25837850CrossRefGoogle Scholar
  2. Adams, M A, Pate, J S 1992Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.)Plant Soil145107113CrossRefGoogle Scholar
  3. Aitken, R L, Moody, P W, Compton, B L, Gallagher, E C 1992Plant and soil diagnostic tests for assessing the phosphorus status of seedling Macadamia integrifoliaAust. J. Agr. Res43191201CrossRefGoogle Scholar
  4. Arahou, M, Diem, H G 1997Iron deficiency induces cluster (proteoid) root formation in Casuarina glaucaPlant Soil1967179CrossRefGoogle Scholar
  5. Bates, T R, Lynch, J P 1996Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availabilityPlant Cell Environ19529538CrossRefGoogle Scholar
  6. Bhatti, A S, Loneragan, J F 1970Phosphorus concentrations in wheat leaves in relation to phosphorus toxicityAgron. J62288290CrossRefGoogle Scholar
  7. Bieleski, R L 1973Phosphate pools, phosphate transport and phosphate availabilityAnnu. Rev. Plant Physiol24225252CrossRefGoogle Scholar
  8. Bolland, M D A 1997Comparative phosphorus requirement of four lupin speciesJ. Plant Nutr2012391253Google Scholar
  9. Boulet, F M, Lambers, H 2004Characterisation of arbuscular mycorrhizal colonisation in cluster roots of Hakea verrucosa FMuell (Proteaceae), and its effect on growth and nutrient acquisition in ultramafic soil. Plant Soil269357367Google Scholar
  10. Braum, S M, Helmke, P A 1995White lupin utilises soil phosphorus that is unavailable to soybeanPlant Soil17695100CrossRefGoogle Scholar
  11. Brennan, R F, Bolland, M D A 2003Lupinus luteus cvWodjil takes up more phosphorus and cadmium than Lupinus angustifolius cv. Kayla. Plant Soil248167185Google Scholar
  12. Brouwer, R 1963Some aspects of the equilibrium between overground and underground plant partsMeded. Inst. Biol. Scheikd. Onderzoek Landbouwgewassen2133139Google Scholar
  13. Brundrett, M C, Abbott, L K 1991Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plantsAust. J. Bot39445457CrossRefGoogle Scholar
  14. Chollet, R, Vidal, J, O’Leary, M H 1996Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plantsAnnu. Rev. Plant Physiol47273298CrossRefGoogle Scholar
  15. Clarkson, D T 1985Factors affecting mineral nutrient acquisition by plantsAnnu. Rev. Plant Physiol3677115CrossRefGoogle Scholar
  16. Clarkson, D T, Hanson, J 1980The mineral nutrition of higher plantsAnn. Rev. Plant Physiol31239298CrossRefGoogle Scholar
  17. Clements, J C, White, P F, Buirchell, B J 1993The root morphology of Lupinus angustifolius in relation to other Lupinus speciesAust. J. Agric. Res4413671375CrossRefGoogle Scholar
  18. Crocker, L J, Schwintzer, C R 1993Factors affecting formation of cluster roots in Myrica gale seedlings in water culturePlant Soil152287298CrossRefGoogle Scholar
  19. Day, D A, Krab, K, Lambers, H, Moore, A L, Siedow, J N, Wagner, A M, Wiskich, J T 1996The cyanide–resistant oxidase: to inhibit or not to inhibit, that is the questionPlant Physiol11012PubMedGoogle Scholar
  20. Dell, B, Kuo, J, Thomson, C J 1980Development of proteoid roots in Hakea obliqua R. Br. (Proteaceae) grown in water culture.Aust. J. Bot282737CrossRefGoogle Scholar
  21. Delhaize, E, Hebb, DM, Ryan, PR 2000Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with enhanced citrate accumulation of effluxPlant Physiol12520592067CrossRefGoogle Scholar
  22. Delhaize, E, Ryan, P R, Hocking, P J, Richardson, A E 2003Effects of altered citrate synthase and isocitrate dehydrogenase expression on internal citrate concentrations and citrate efflux from tobacco (Nicotiana tabacum L.) rootsPlant Soil248137144CrossRefGoogle Scholar
  23. Diem, H G, Gueye, I, Gianinazzi-Pearson, V, Fortin, J A, Dommergues, Y R 1981Ecology of VA mycorrhizae in the tropics: the semi-arid zone of SenegalOecologia Plantar25362Google Scholar
  24. Dinkelaker, B, Römheld, V, Marschner, H 1989Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)Plant Cell Environ12285292CrossRefGoogle Scholar
  25. Dinkelaker, B, Hengeler, C, Marschner, H 1995Distribution and function of proteoid root clusters and other root clustersBot. Acta108183200Google Scholar
  26. Dinkelaker, B, Hengeler, G, Neumann, G, Eltrop, L, Marschner, H 1997Root exudates and mobilization of nutrientsRennenberg, HEschrich, WZiegler, H eds. Trees–Contributions to Modern Tree PhysiologyBackhuys PublishersLeiden441452Google Scholar
  27. Engler, A 1894ProteaceaeEngler, APrantl, K eds. Die natürlichen Pflanzenfamilien, III Teil 1. HaelfteVerlag von Wilhelm EngelmannLeipzig119156Google Scholar
  28. Epstein, E, Rains, D W, Elzam, O E 1963Resolution of dual mechanisms of potassium absorption by barley rootsProc. Natl. Acad. Sci. USA49684692PubMedCrossRefGoogle Scholar
  29. Esau, K 1960Plant Anatomy3rd ednJohn Wiley and SonsNew YorkGoogle Scholar
  30. Esteban, E, Carpena, R O, Meharg, A A 2003High-affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate statusNew Phytol158165173CrossRefGoogle Scholar
  31. Gaspar, T, Hausman, J F, Faivre-Rampant, O, Kevers, C, Dommes, J 2002Auxins in the biology of rootsWaisel, YEshel, AKafkafi, U eds. Plant Roots: The Hidden Half3rd ednMarcel Dekker, Inc.New York587616Google Scholar
  32. Gardner, W K, Parbery, D G, Barber, D A 1981Proteoid root morphology and function in Lupinus albusPlant Soil60143147CrossRefGoogle Scholar
  33. Gardner, W K, Parbery, D G, Barber, D A 1982The acquisition of phosphorus by Lupinus albus L I. Some characteristics of the soil/root interfacePlant Soil681932CrossRefGoogle Scholar
  34. Gardner, W K, Barber, D A, Parbery, D G 1983The acquisition of phosphorus by Lupinus albus L III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced Plant Soil70107124CrossRefGoogle Scholar
  35. Gerke, J, Römer, W, Jungk, A 1994The excretion of citric and malic acid by proteoid roots of Lupinus albus L.: effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere in samples of an oxisol and luvisolZ. Pflanzenernähr. Bodenk157289294CrossRefGoogle Scholar
  36. Gerke, J, Beißner, L, Römer, W 2000aThe quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root I. The basic concept and determination of soil parametersJ. Plant Nutr. Soil Sci163207212CrossRefGoogle Scholar
  37. Gerke, J, Römer, W, Beißner, L 2000bThe quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root II. The importance of soil and plant parameters for uptake of mobilizedP. J. Plant Nutr. Soil Sci163213219CrossRefGoogle Scholar
  38. Gilbert, G A, Allan, D A, Vance, C P 1997Phosphorus deficiency in white lupin alters root development and metabolismFlores, HELynch, JPEissenstat, D eds. Radical Biology: Advances and Perspectives on the Function of Plant RootsAmerican Society of Plant PhysiologistsRockville92103Google Scholar
  39. Gilbert, G A, Knight, J D, Vance, C P, Allan, D L 1999Acid phosphatase activity in phosphorus-deficient white lupin rootsPlant, Cell Environ22801810CrossRefGoogle Scholar
  40. Gilbert, G A, Knight, J D, Vance, C P, Allan, D L 2000Proteoid root development of phosphorus deficient white lupin is mimicked by auxin and phosphonateAnn. Bot. London85921928CrossRefGoogle Scholar
  41. Glass, A D M 2002Nutrient absorption by plant roots: regulation of uptake to match plant demandWaisel, YEshel, AKafkafi, U eds. Plant Roots: The Hidden Half3rd ednMarcel Dekker, Inc.New York571586Google Scholar
  42. Glick, B R, Jacobson, C B, Schwarze, M M K, Pasternak, J J 19941-Aminocyclopropane-1-carboxylate deaminase mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongationCan. J. Microbiol40911915CrossRefGoogle Scholar
  43. Gochnauer, M B, McCully, M E, Labbé, H 1989Different populations of bacteria associated with sheathed and bare regions of roots of field–grown maizePlant Soil144107120CrossRefGoogle Scholar
  44. Grierson, P F 1992Organic acids in the rhizosphere of Banksia integrifolia L. f. Plant Soil144259265CrossRefGoogle Scholar
  45. Grierson, P F, Attiwell, P M 1989Chemical characteristics of the proteoid root mat of Banksia integrifoliaL. f. Aust. J. Bot37137143CrossRefGoogle Scholar
  46. Grierson, P F, Comerford, N B 2000Non-destructive measurement of acid phosphatase activity in the rhizosphere using nitrocellulose membranes and image analysisPlant Soil2184957CrossRefGoogle Scholar
  47. Grose, M J 1989Phosphorus nutrition of seedlings of Waratah, Telopea speciosissima (Sm.) R.Br(Proteaceae)Aust. J. Bot37313320CrossRefGoogle Scholar
  48. Groves, R H, Keraitis, K 1976Survival of seedlings of three sclerophyll species at high levels of phosphorus and nitrogenAust. J. Bot24681690CrossRefGoogle Scholar
  49. Grundon, N J 1972Mineral nutrition of some Queensland heath plantsJ. Ecol60171181CrossRefGoogle Scholar
  50. Guy, R D, Berry, J A, Fogel, M L, Turpin, D H, Weger, H G 1992Fractionation of the stable isotopes of oxygen during respiration by plants–the basis of a new technique to estimate partitioning to the alternative pathLambers, HPlas, L H W eds. Plant Respiration: Molecular, Biochemical and Physiological AspectsSPB Academic PublishingThe Hague443453Google Scholar
  51. Hagström, J, James, W M, Skene, K R 2001A comparison of structure, development and function in cluster roots of Lupinus albus L under phosphate and iron stressPlant Soil2328190CrossRefGoogle Scholar
  52. Handreck, K A 1991Interactions between iron and phosphorus in the nutrition of Banksia ericifolia L. f. var. ericifolia (Proteaceae) in soil-less potting media Aust. J. Bot39373384CrossRefGoogle Scholar
  53. Harrison, A F, Helliwell, D R 1979A bioassay for comparing phosphorus availability in soilsJ. Appl. Ecol16497505CrossRefGoogle Scholar
  54. Hens M, Turner B L and Hocking P J 2003 Chemical nature and bioavailability of soil organic phosphorus mobilized by organic anions. In Proceedings of the 2nd International Symposium on Phosphorus Dynamics in the Soil-Plant Continuum, the University of Western Australia. Perth, Western Australia.Google Scholar
  55. Hinsinger, P 2001Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a reviewPlant Soil237173195CrossRefGoogle Scholar
  56. Hinsinger, P, Plassard, C, Tang, C, Jaillard, B 2003Origins of root mediated pH changes in the rhizosphere and their responses to environmental constraints: a reviewPlant Soil2484359CrossRefGoogle Scholar
  57. Hocking, P, Jeffery, S 2004Cluster root production and organic anion exudation in a group of old world lupins and a new world lupinPlant Soil258135150CrossRefGoogle Scholar
  58. Hocking, P J, Keerthisinghe, G, Smith, F W, Randall, P J 1998A comparison of the ability of different crop species to access poorly-available soil phosphorusAndo, PFujita, KMae, TMatsumoto, HMori, SSekiya, J eds. Plant Nutrition for Sustainable Food Production and EnvironmentKluwer Academic PublishersDordrecht305308Google Scholar
  59. Hoffland, E, Findenegg, G R, Nelemans, J A 1989Solubilization of rock phosphate by rape II. Local root exudation of organic acids as a response to P-starvationPlant Soil113161165CrossRefGoogle Scholar
  60. Hurd, T M, Schwintzer, C R 1996Formation of cluster roots in Alnus incana ssp Rugosa in the field four Alnus species in water culture with phosphorus and iron deficiencyCan. J. Bot7416841686CrossRefGoogle Scholar
  61. Hurd, T M, Schwintzer, C R 1997Formation of cluster roots and mycorrhizal status Comptonia peregrine and Myrica pensylvanica in MaineUSA Physiol. Plant99680689CrossRefGoogle Scholar
  62. Jeffery, D W 1967Phosphate nutrition of Australian heath plants I. The importance of proteoid roots in Banksia (Proteaceae)Aust. J. Bot15403411CrossRefGoogle Scholar
  63. Jeschke, D W, Pate, J S 1995Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphologyJ. Exp. Bot46895905CrossRefGoogle Scholar
  64. Johnson, J F, Allan, D L, Vance, C P 1994Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albusPlant Physiol104757665Google Scholar
  65. Johnson, J F, Allan, D L, Vance, C P, Weiblen, G 1996aRoot carbon dioxide fixation by phosphorus-deficient Lupinus albus Contribution to organic acid exudation by proteoid rootsPlant Physiol1121930CrossRefGoogle Scholar
  66. Johnson, J F, Vance, C P, Allan, D L 1996bPhosphorus deficiency in Lupinus albus Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylasePlant Physiol1123141CrossRefGoogle Scholar
  67. Jones, D L 1998Organic acids in the rhizosphere–a critical reviewPlant Soil2052544CrossRefGoogle Scholar
  68. L, Jones D, G, Dennis P, G, Owen A, W, van Hees P A 2003Organic acid behaviour in soils-misconceptions and knowledge gapsPlant Soil2483141CrossRefGoogle Scholar
  69. Jungk, A O 2002Dynamics of nutrient movement at the soil-root interfaceWaisel, YEshel, AKafkafi, U eds. Plant Roots: The Hidden Half3rd ednMarcel Dekker, Inc.New York587616Google Scholar
  70. Kamh, M, Horst, WJ, Amer, F, Mostafa, H, Maier, P 1999Mobilisation of soil and fertilizer phosphate by cover cropsPlant Soil2111927CrossRefGoogle Scholar
  71. Kania, A, Langlade, N, Martinoia, E, Neumann, G 2003Phosphorus deficiency-induced modifications in citrate catabolism and in cytosolic pH as related to citrate exudation in cluster roots of white lupinPlant Soil248117127CrossRefGoogle Scholar
  72. Keerthisinghe, G, Hocking, P, Ryan, P R, Delhaize, E 1998Proteoid roots of lupin (Lupinus albus L.): Effect of phosphorus supply on formation and spatial variation in citrate efflux and enzyme activityPlant, Cell Environ21467478CrossRefGoogle Scholar
  73. Kihara, T, Wada, T, Suzuki, Y, Hara, T, Koyama, H 2003Alteration of citrate metabolism in cluster roots of white lupinPlant Cell Physiol44901908PubMedCrossRefGoogle Scholar
  74. Kramer, D, Römheld, V, Landsberg, E, Marschner, H 1980Induction of transfer-cell formation by iron deficiency in the root epidermis of Helianthus annuusPlanta147335339CrossRefGoogle Scholar
  75. Kuiper, D, Kuiper, P J C, Lambers, H, Schuit, J, Staal, M 1989Cytokinin concentration in relation to mineral nutrition and benzyladenine treatment in Plantago major ssp pleiospermaPhysiol. Plant75511517CrossRefGoogle Scholar
  76. Kuiper, D, Schuit, J, Kuiper, P J C 1988Effect of internal and external cytokinin concentrations on root growth and root to shoot ratio of Plantago major ssp pleiosperma at different nutrient concentrationsPlant Soil111231236CrossRefGoogle Scholar
  77. Lambers H 1997 Oxidation of mitochondrial NADH and the synthesis of ATP. In Plant Metabolism. Eds. DT Dennis, DH Turpin, DD Lefebrve and DB Layzell. pp. 200–219. Longman Singapore Publishers, Singapore.Google Scholar
  78. Lambers H, Atkin O A and Millenaar F F 2002b Respiratory patterns in roots. In Plant Roots: The Hidden Half, 3rd edn. Eds. Y Waisel, A Eshel and U Kafkafi. pp. 521–552. Marcel Dekker, Inc., New York.Google Scholar
  79. Lambers, H, Chapin III, F S, Pons, T L 1998Plant Physiological EcologySpringer-VerlagNew YorkGoogle Scholar
  80. Lambers, H, Cramer, M D, Shane, M W, Wouterlood, M, Poot, P, Veneklaas, E J 2003Structure and functioning of cluster roots and plant responses to phosphate deficiencyPlant Soil248ixxixCrossRefGoogle Scholar
  81. Lambers, H, Juniper, D, Cawthray, G R, Veneklaas, E J, Martinez, E 2002aThe pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soilPlant Soil238111122CrossRefGoogle Scholar
  82. Lamont, B 1972a‘Proteoid’ roots in the legume Viminaria junceaSearch39091Google Scholar
  83. Lamont, B 1972bThe morphology and anatomy of proteoid roots in the genus HakeaAust. J. Bot20155174CrossRefGoogle Scholar
  84. Lamont, B 1973Factors affecting the distribution of proteoid roots within the root systems of two Hakea speciesAust. J. Bot21165187CrossRefGoogle Scholar
  85. Lamont, B 1976The effects of seasonality and waterlogging on the root systems of a number of Hakea speciesAust. J. Bot24691702CrossRefGoogle Scholar
  86. Lamont B B 1981 Specialized roots of non-symbiotic origin in heathlands. In Ecosystems of the World, Vol. 9B, Heathlands and Related Shrublands. B. Analytical Studies. Ed. R L Specht. pp. 183–195. Elsevier Scientific, Amsterdam.Google Scholar
  87. Lamont, B 1982Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western AustraliaBot. Rev48597689CrossRefGoogle Scholar
  88. Lamont, B, Brown, G, Mitchell, D T 1984Structure, environmental effects on their formation, and function of proteoid roots in Leucadendron laureolum (Proteaceae)New Phytol97381390CrossRefGoogle Scholar
  89. Lamont, B 2003Structure, ecology and physiology of root clusters–a reviewPlant Soil248119CrossRefGoogle Scholar
  90. Langlade, N B, Messerli, G, Weisskopf, L, Plaza, S, Tomasi, N, Smutny, J, Neumann, G, Martinoia, E, Massonneau, A 2002ATP citrate lyase: cloning, heterologous expression and possible implication in root organic acid metabolism and excretionPlant Cell Environ2515611569CrossRefGoogle Scholar
  91. Liang, R, Li, C 2003Differences in cluster-root formation and carboxylate exudation in Lupinus albus Lunder different nutrient deficiencies. Plant Soil248221227Google Scholar
  92. Liu, J, Uhde-Stone, C, Li, A, Vance, C, Allan, D 2001A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.)Plant Soil237257266CrossRefGoogle Scholar
  93. Loneragan, J F, Carroll, M D, Snowball, K 1966Phosphorus toxicity in cereal cropsJ. Aust. I. Agr. Sci32221223Google Scholar
  94. Lopez-Bucio, J, Vega, O M, Guevara-Garcia, A, Herrera-Estrella, L 2000Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrateNat. Biotechnol18450453PubMedCrossRefGoogle Scholar
  95. Louis, I, Racette, S, Torrey, J G 1990Occurrence of cluster roots in Myrica cerifera L (Myricaceae) in water culture in relation to phosphorus nutritionNew Phytol115311318CrossRefGoogle Scholar
  96. Ma, Z, Bielenberg, D G, Brown, K M, Lynch, J P 2001Regulation of root hair density by phosphorus availability in Arabidopsis thalianaPlant Cell Environ24459467CrossRefGoogle Scholar
  97. Malajczuk, N, Bowen, G D 1974Proteoid roots are microbially inducedNature251316317CrossRefGoogle Scholar
  98. Marschner, H 1995Mineral Nutrition of Higher Plants2nd ednAcademic PressLondonGoogle Scholar
  99. Marschner, H, Römheld, V, Cakmak, I 1987Root-induced changes of nutrient availability in the rhizosphereJ. Plant Nutr1011751184Google Scholar
  100. Marschner, H, Römheld, V, Horst, W J, Martin, P 1986Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plantsZ. Pflanzenernähr. Bodenk149441456CrossRefGoogle Scholar
  101. Marschner, P, Neumann, G, Kania, A, Weiskopf, L, Lieberei, R 2002Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.)Plant Soil246167174CrossRefGoogle Scholar
  102. Massonneau, A, Langlade, N, Léon, S, Smutny, J, Vogt, E, Neumann, G, Martinoia, E 2001Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy statusPlanta231534542CrossRefGoogle Scholar
  103. Mathesius, U, Schlaman, H R M, Spaink, H R, Sautter, C, Rolf, B G, Djordjevic, M A 1998Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharidesPlant J142334PubMedCrossRefGoogle Scholar
  104. McArthur, W M 1991Reference Soils of South-western AustraliaDepartment of AgriculturePerthGoogle Scholar
  105. McCluskey, J, Herdman, L, Skene, K R 2004Iron deficiency induces changes in metabolism of citrate in lateral roots and cluster roots of Lupinus albusPhysiol. Plant121586594CrossRefGoogle Scholar
  106. McCully, M E 1999Roots in soil: unearthing the complexities of roots and their rhizospheresAnnu. Rev. Plant Physiol50695718CrossRefGoogle Scholar
  107. McCully, M E, Shane, M W, Baker, A N, Huang, C X, Ling, L E C, Canny, M J 2000The reliability of cryoSEM for the observation and quantification of xylem embolisms and quantitative analysis of xylem sap in situJ. Microsc-Oxford1982433CrossRefGoogle Scholar
  108. Miller, S S, Liu, J, Allan, D L, Menzhuber, C J, Fedorova, M, Vance, C P 2001Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupinPlant Physiol127594606PubMedCrossRefGoogle Scholar
  109. Millenaar, F F, Lambers, H 2003The alternative oxidase: in vivo regulation and functionPlant Biol5215CrossRefGoogle Scholar
  110. Moraes, T F, Plaxton, W C 2000Purification and characterization of phosphoenolpyruvate carboxylase from Brassica napus (rapeseed) suspension cell cultures–Implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilationEur. J. Biochem26744654476PubMedCrossRefGoogle Scholar
  111. Neumann, G, Römheld, V 1999Root excretion of carboxylic acids and protons in phosphorus-deficient plantsPlant Soil211121130CrossRefGoogle Scholar
  112. Neumann, G, Römheld, V 2000The release of root exudates as affected by the plant’s physiological statusPinton, RVaranini, ZNannipieri, P eds. The Rhizosphere: Biochemistry and organic substances in the soil-plant interfaceMarcel Dekker, Inc.New York4193Google Scholar
  113. Neumann, G, Martinoia, E 2002Cluster roots- an underground adaptation for survival in extreme environmentsTrends Plant Sci7162167PubMedCrossRefGoogle Scholar
  114. Neumann G and Römheld V 2002 Root induced changes in the availability of nutrients in the rhizosphere. In Plant Roots: The Hidden Half, 3rd edn. Eds. Y Waisel, A Eshel and U Kafkafi. pp. 617–649.Google Scholar
  115. Neumann, G, Massonneau, A, Langlade, N, Dinkelaker, B, Hengeler, C, Römheld, V, Martinoia, E 2000Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.)Ann. Bot. London85909919CrossRefGoogle Scholar
  116. Neumann, G, Massonneau, A, Martinoia, E, Römheld, V 1999Physiological adaptations to phosphorus deficiency during proteoid root development in white lupinPlanta208373382CrossRefGoogle Scholar
  117. Nichols, D G, Beardsell, D V 1981Interactions of calcium, nitrogen and potassium with phosphorus on the symptoms of toxicity in grevillea cv‘poorinda firebird’. Plant Soil61437445CrossRefGoogle Scholar
  118. Nye, P H, Tinker, P B 1977Solute Movements in the Root–Soil SystemBlackwellOxfordGoogle Scholar
  119. Ohwaki, Y, Sugahara, K 1997Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L)Plant Soil1894955CrossRefGoogle Scholar
  120. Ozanne, P G, Specht, R L 1981Mineral Nutrition of Heathlands: Phosphorus toxicitySpecht, R L eds. Ecosystems of the World, Vol 9A, Heathlands and Related Shrublands. Descriptive StudiesElsevier ScientificAmsterdam277289Google Scholar
  121. Ozawa, K, Osaki, M, Matsui, H, Honma, M, Tadano, T 1995Purification and properties of acid phosphatase secreted from lupin roots under phosphorus-deficiency conditionsSoil Sci. Plant Nutr41461469Google Scholar
  122. Parks, S E, Haigh, A M, Creswell, G C 2000Stem tissue phosphorus as an index of the phosphorus status of Banksia ericifolia LPlant Soil2275965CrossRefGoogle Scholar
  123. Pate, J S 1994The mycorrhizal association: just one of many nutrient acquiring specialisations in natural ecosystemsRobson, A DAbbott, L KMalajczuk, N eds. Management of Mycorrhizas in Agriculture, Horticulture and ForestryKluwer Academic PublishersDordrecht110Google Scholar
  124. Pate, J S, Dell, B 1984Economy of mineral nutrients in sandplain speciesPate, J SBeard, J S eds. Kwongan–Plant Life of the SandplainUniversity of Western Australia PressNedlands227252Google Scholar
  125. Pate, J S, Watt, M 2002Roots of Banksia spp. (Proteaceae) with special reference to functioning of their specialised root clustersWaisel, YEshel, AKafkafi, U eds. Plant Roots: The Hidden Half3Marcel Dekker, Inc.New York9891006Google Scholar
  126. Pate, J S, Verboom, W H, Galloway, P D 2001Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? AustJ. Bot49529560Google Scholar
  127. Pattinson G S and McGee P A 2004 Influence of colonisation by an arbuscular mycorrhizal fungus on the growth of seedlings of Banksia ericifolia (Proteaceae) Mycorrhiza 14, 119–125.Google Scholar
  128. Peiter, E, Yan, F, Schubert, S 2001Proteoid root formation of Lupinus albus L. is triggered by high pH of the root mediumJ. Appl. Bot755052Google Scholar
  129. Purnell, H M 1960Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian speciesAust. J. Bot83850CrossRefGoogle Scholar
  130. Racette, S, Louis, I, Torrey, J G 1990Cluster roots formation by Gymnostoma papuanum (Casuarinaceae) in relation to aeration and mineral nutrient availability in water cultureCan. J. Bot6825642570CrossRefGoogle Scholar
  131. Raghothama, K G 1999Phosphate acquisitionAnnu. Rev. Plant Physiol50665693CrossRefGoogle Scholar
  132. Randall, P J, Hayes, J E, Hocking, P J, Richardson, A E 2001Root exudates in phosphorus acquisition by plantsAe, NArihara, JOkada, KSrinivasan, A eds. Plant Nutrient Acquisition–New perspectivesSpringer-VeralgTokyo71100Google Scholar
  133. Reddell, P, Yun, Y, Shipton, W A 1997Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supplyAust. J. Bot454151CrossRefGoogle Scholar
  134. Ribas-Carbo, M, Robinson, S A, Giles, L 2005The application of the oxygen-isotope technique to assess respiratory pathway partitioningLambers, HRibas-Carbo, M eds. Plant Respiration: from cell to ecosystemKluwer Academic PublishersDordrechtGoogle Scholar
  135. Robinson, D 1994The responses of plants to non-uniform supplies of nutrientsNew Phytol127635674CrossRefGoogle Scholar
  136. Robson, A D, Pitman, M G 1983Interactions between nutrients in higher plantsLäuchliand, ABieleski, R L eds. ncyclopedia of Plant PhysiologySpringer-VerlagBerlin147180New Series, Vol. 15AGoogle Scholar
  137. Roelofs, R F R, Rengel, Z, Cawthray, G R, Dixon, K W, Lambers, H 2001Exudation of carboxylates in Australian Proteaceae: chemical compositionPlant Cell Environ24891904CrossRefGoogle Scholar
  138. Römer, W, Kang, D K, Egle, K Gerke J, Keller, H 2000The acquisition of cadmium by Lupinus albus L., Lupinus angustifolius L., and Lolium multiflorum LamJ. Plant Nutr. Soil Sci163623662CrossRefGoogle Scholar
  139. Rosenfield, C L, Reed, D W, Kent, M W 1991Dependency of iron reduction on development of a unique root morphology in Ficus benjamina LPlant Physiol9511201124PubMedCrossRefGoogle Scholar
  140. Ryan, P R, Skerrett, M, Findlay, G P, Delhaize, E, Tyerman, S D 1997Aluminium activates an anion channel in the apical cells of wheat rootsProc. Natl. Acad. Sci. USA9465476552PubMedCrossRefGoogle Scholar
  141. Ryan, P R, Delhaize, E, Jones, D L 2001Function and mechanism of organic anion exudation from plant rootsAnnu. Rev. Plant Physiol52527560CrossRefGoogle Scholar
  142. Ryan, P R, Dong, B, Watt, M, Kataoka, T, Delhaize, E 2003Strategies to isolate transporters that facilitate organic anion efflux from plant rootsPlant Soil2486169CrossRefGoogle Scholar
  143. Rychter, A M, Mikulska, M 1990The relationship between phosphate status and cyanide-resistant respiration in bean rootsPhysiol. Plant79663667CrossRefGoogle Scholar
  144. Sas, L, Rengel, Z, Tang, C 2001Excess cation uptake and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiencyPlant Sci16011911198PubMedCrossRefGoogle Scholar
  145. Sasaki, T, Yamamoto, Y, Ezaki, B, Katsuhara, M, Ju Ahn, S, Ryan, PR, Delhaize, E 2004A wheat gene encoding an aluminium-activated malate transporterPlant Journal37645653PubMedCrossRefGoogle Scholar
  146. Schmidt, S, Mason, M, Sangtiean, T, Stewart, G R 2003Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen?Plant Soil248157165CrossRefGoogle Scholar
  147. Schmidt, W, Michalke, W, Schikora, A 2003Proton pumping by tomato roots. Effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H+-ATPase in rhizodermal cellsPlant Cell Environ26361370CrossRefGoogle Scholar
  148. Shen, J, Rengel, Z, Tang, C, Zhang, F 2003Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albusPlant Soil248199206CrossRefGoogle Scholar
  149. Shane, M W, Vos, M, Roock, S, Cawthray, G R, Lambers, H 2003aEffect of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata RBr. Plant Soil248209219CrossRefGoogle Scholar
  150. Shane, M W, Vos, M, Roock, S, Lambers, H 2003bShoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root systemPlant Cell Environ26265273CrossRefGoogle Scholar
  151. Shane, M W, McCully, M E, Lambers, H 2004aTissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae)J. Exp. Bot5510331044CrossRefGoogle Scholar
  152. Shane, M W, Cramer, M D, Funayama-Noguchi, S, Cawthray, G R, Millar, A H, Day, D A, Lambers, H 2004bDevelopmental physiology of cluster-root carboxylate synthesis and exudation in Harsh Hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidasePlant Physiol135549560CrossRefGoogle Scholar
  153. Shane, M W, Szota, C, Lambers, H 2004cA root trait accounting for the extreme phosphorus sensitivity of Hakea prostrata (Proteaceae)Plant Cell Environ279911004CrossRefGoogle Scholar
  154. Skene, K R 1998Cluster roots: some ecological considerationsJ. Ecol8610601064CrossRefGoogle Scholar
  155. Skene, K R 2000Pattern formation in cluster roots: some developmental and evolutionary considerationsAnn. Bot. London85901908CrossRefGoogle Scholar
  156. Skene, K R 2001Cluster roots: model experimental tools for key biological problemsJ. Exp. Bot52479485PubMedGoogle Scholar
  157. Skene, K R 2003The evolution of physiology and developmental biology in cluster roots: teaching an old dog new tricks?Plant Soil2482130CrossRefGoogle Scholar
  158. Skene, K R, James, W M 2000A comparison of the effects of auxin on cluster root initiation and development in Grevillea robusta Cunn. ex R.Br. (Proteaceae) and in the genus Lupinus (Leguminosae)Plant Soil219221229CrossRefGoogle Scholar
  159. Skene, K R, Kierans, M, Sprent, J I, Raven, J A 1996Structural aspects of cluster root development and their possible significance for nutrient acquisition in Grevillea robusta (Proteaceae)Ann. Bot. London77443451CrossRefGoogle Scholar
  160. Skene, K R, Raven, J A, Sprent, J I 1998Cluster root development in Grevillea robusta (Proteaceae). I. Xylem, pericycle, cortex, and epidermis development in a determinate rootNew Phytol138725732CrossRefGoogle Scholar
  161. Smith, F W, Mudge, S R, Rae, A L, Glassop, D 2003Phosphate transport in plantsPlant Soil2487183CrossRefGoogle Scholar
  162. Specht, R L 1981Nutrient release from decomposing leaf litter of Banksia ornata, Dark Island Heathland, South AustraliaAust. J. Ecol65963CrossRefGoogle Scholar
  163. Specht, R L, Specht, A 1999Australian Plant Communities: Dynamics of Structure, Growth and BiodiversityOxford University PressOxfordGoogle Scholar
  164. Ström, L, Olsson, T, Tyler, G 1994Differences between calcifuge and acidifuge plants in root exudation of low-molecular organic-acidsPlant Soil167239245CrossRefGoogle Scholar
  165. Tang, C, Hinsinger, P, Drevon, J J, Jaillard, B 2001Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula LAnn. Bot. London88131138CrossRefGoogle Scholar
  166. Theodorou, M E, Plaxton, W C 1993Metabolic adaptations of plant respiration to nutritional phosphate deprivationPlant Physiol101339344PubMedGoogle Scholar
  167. Tomos, A D, Leigh, R A 1999The pressure probe: a versatile tool in plant cell physiologyAnnu. Rev. Plant Physiol50447472CrossRefGoogle Scholar
  168. Trinick, M J 1977Vesicular-arbuscular infection and soil phosphorus utilization in Lupinus sppNew Phytol78297304CrossRefGoogle Scholar
  169. Uhde-Stone, C, Gilbert, D, Johnston, J M-F, Litjens, R, Zinn, K E, Temple, S J, Vance, C P, Allan, D L 2003Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolismPlant Soil24899116CrossRefGoogle Scholar
  170. Vuuren, M M I, Robinson, D, Griffiths, B S 1996Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in the soilPlant Soil178185192CrossRefGoogle Scholar
  171. Vance, C P, Uhde-Stone, C, Allen, D L 2003Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable sourceNew Phytol157423447CrossRefGoogle Scholar
  172. Varney, G T, McCully, M E 1991The branch roots of Zea. II. Developmental loss of the apical meristem in field-grown rootsNew Phytol118535546CrossRefGoogle Scholar
  173. Veneklaas, E J, Stevens, J, Cawthray, G R, Turner, S, Grigg, A M, Lambers, H 2003Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptakePlant Soil248187197CrossRefGoogle Scholar
  174. Vorster, P W, Jooste, J H 1986Potassium and phosphate absorption by excised ordinary and proteoid roots of the ProteaceaeS. Afr. J. Bot52277281Google Scholar
  175. Wasaki, J, Yamamura, T, Shinano, T, Osaki, M 2003Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiencyPlant Soil248129136CrossRefGoogle Scholar
  176. Waters, B M, Blevins, D G 2000Ethylene production, cluster root formation, and localization of iron(III) reducing capacity in Fe deficient squash rootsPlant Soil2252131CrossRefGoogle Scholar
  177. Watt, M, Evans, J R 2003Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root developmentPlant Soil248271283CrossRefGoogle Scholar
  178. Watt, M, Evans, J R 1999aLinking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentrationPlant Physiol120705716CrossRefGoogle Scholar
  179. Watt, M, Evans, J R 1999bProteoid roots: physiology and developmentPlant Physiol121317323CrossRefGoogle Scholar
  180. Weisskopf L, Fromin N, Tomasi N, Aragno M and Martinoia E 2004 Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure. Plant Soil in press.Google Scholar
  181. Wenzel, C L, Ashford, A E, Summerell, B A 1994Phosphate solubilising bacteria associated with proteoid roots of seedlings of warath [Telopea speciosissima (Sm.) R.Br.]New Phytol128487496CrossRefGoogle Scholar
  182. White, D, Robson, A 1989Rhizosphere acidification and Fe3+ reduction in Lupinus and pea: Iron deficiency is not due to a poor ability to reduce Fe3+ Plant Soil119163175CrossRefGoogle Scholar
  183. Wouterlood, M, Cawthray, G R, Scanlon, T T, Lambers, H, Veneklaas, E 2004Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plantsNew Phytol162745753CrossRefGoogle Scholar
  184. Yan, F, Zhu, Y, Müller, C, Zörb, C, Schubert, S 2002Adaptation of H+ - pumping and plasma membrane H+ATPase activity in proteoid roots of white lupin under phosphate deficiencyPlant Physiol1295063PubMedCrossRefGoogle Scholar
  185. Zaïd E H, Arahou M, Diem H G and Morabet R 2003 Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248, 229–235.Google Scholar
  186. Zhang, H, Jennings, A, Barlow, PW, Forde, BG 1999Dual pathways for regulation of root branching by nitrateProc. Natl. Acad. Sci. USA9665296534PubMedCrossRefGoogle Scholar
  187. Zhang W H, Ryan P R and Tyermann S D 2004 Citrate-permeable channels in the plasma membrane of cluster roots from white lupin. Plant Physiol. in press.Google Scholar
  188. Zheng, S J, Ma, J F, Matsumoto, H 1998High aluminium resistance in buckwheat. I. Al-induced specific excretion of oxalic acid from root tipsPlant Physiol117745751CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.School of Plant Biology, Faculty of Natural and Agricultural SciencesThe University of Western AustraliaCrawleyAustralia

Personalised recommendations