Plant and Soil

, Volume 270, Issue 1, pp 371–382 | Cite as

Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system

  • Nidchaporn Na Bhadalung
  • Amnat Suwanarit
  • Bernard Dell
  • Omsub Nopamornbodi
  • Arinthip Thamchaipenet
  • Jarong Rungchuang
Article

Abstract

Diversity of arbuscular mycorrhizal fungi (AMF) in 27-year long-term NP-fertilization plots under a maize cropping system in Thailand was studied through spore morphological characterization. The plots received 0–0, 60–60, 120–120 and 180–180 kg N-P2O5 ha−1 year−1 as ammonium sulfate and triple superphosphate. The plots were sampled monthly for one year, the AMF spores were counted and morphotyped, and taxa were identified after morphotyping and monospecific pot culture. Spore number g−1 soil, relative spore abundance and Shannon-Wiener indexes were calculated. Sixteen putative taxa were recorded from the field of which nine sporulated on maize roots in pot culture. The long-term fertilization caused decreases in AMF total spore numbers and variation in species diversity depended on sampling time. Effects of fertilization on spore number and also relative spore abundance varied with species and sampling time. Among the nine species sporulating under maize, only Acaulospora sp.1 showed no change (P > 0.003 after Bonferroni correction) in spore number with fertilization in the field; and was therefore classified as an AMF species insensitive to fertilization. Spores of Entrophospora schenckii, Glomus mosseae, Glomus sp.1, Glomus geosporum-like and Scutellospora fulgida, though they decreased in absolute numbers in response to fertilization, showed no change (P > 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species slightly sensitive to fertilization. Three unidentified species of Glomus, though they decreased in absolute numbers in response to fertilization, showed decreases (P < 0.003 after Bonferroni correction) in relative abundance; these species were classified as AMF species highly sensitive to fertilization.

Keywords

arbuscular mycorrhizal fungi fertilizer fungal diversity maize 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baath, E, Spokes, J 1989The effect of added nitrogen and phosphorus on mycorrhizal growth response and infection in Allium choenoprasumCan. J. Bot.6732273232Google Scholar
  2. Banerjee, M R, Chapman, S J, Killham, K 1999Uptake of fertilizer sulphur by maize from soils of low sulphur status as affected by vesicular- arbuscular mycorrhizaeCan. J. Soil Sci.79557559Google Scholar
  3. Boddington, C L, Dodd, J C 2000The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian UltisolPlant Soil218137144Google Scholar
  4. Boonlue S 1997 Viability in soils, infection ability in corn and groundnut and effects on growth of corn of vesicular arbuscular mycorrhizal fungi. Master of Science (Microbiology) Thesis, Kasetsart Univ, Thailand. 125 pGoogle Scholar
  5. Bremmer, J M 1965

    Total Nitrogen

    Black, C AEvans, D DWhite, J LEnsminger, L EClark, P E eds. Methods of Soil Analysis. Part 2: Chemical and microbiological propertiesAmer. Soc. Agron. Inc.Madison, Wisconsin11491178
    Google Scholar
  6. Chevatanaruk R 1985 Species and distribution of vesicular arbuscular mycorrhizal fungi in various soil and their effects on the growth of corn. Master of Science (Microbiology) Thesis, Kasetsart Univ, Thailand. 117 pGoogle Scholar
  7. Coughlan, A P, Dalpè, Y, Lapointe, L, Pichè, Y 2000Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests.Can. JFor. Res./Rev. Can. Rech.3015431554Google Scholar
  8. Daniels, B A, Skipper, H D 1982

    Methods for the recovery and quantitative estimation of propagules from soil

    Schenck, N C eds. Method and Principles of Mycorrhizal ResearchAmer. Phytopath. Soc.St. Paul, Minnesota, U.S.A2935
    Google Scholar
  9. Douds, D D,Jr, Schenck, N C 1990Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contentsNew Phytol.116621627Google Scholar
  10. Douds, D D,Jr, Janke, R R, Peters, S E 1993VAM fungus spore populations and colonization of roots of maize and soybean under conventional and low-input sustainable agricultureAgric. Ecosyst. Environ.43325335Google Scholar
  11. Gavito, M E, Miller, M H 1998Changes in mycorrhiza development in maize induced by crop management practicesPlant Soil198185192Google Scholar
  12. Gerdeman, J W, Nicolson, T H 1963Spores of mycorrhizal Endogone extractable from soil by wet sieving and decantingTrans. Br. Mycol. Soc.46235244Google Scholar
  13. Graham, J H, Leonard, R T, Menge, J A 1981Mambrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular arbuscular mycorrhizae formationPlant Physiol.68548552Google Scholar
  14. Gryndler, M, Lestina, J, Moravec, V, Prikyl, Z, Lipavsky, J 1990Colonization of maize roots by VAM-fungi under conditions of long-term fertilization by varying intensityAgric. Ecosyst. Environ.29183186Google Scholar
  15. Guillemin, J P, Orozco, M O, Gianinazzi-Pearson, V, Gianinzazi, S 1995Influence of phosphate fertilization on fungal alkaline phosphatase and succinate dehydrogenase activities in arbuscular mycorrhiza of soybean and pineappleAgric. Ecosyst. Environ.536369Google Scholar
  16. Guttay, A J R, Dandurand, L M C 1989Interaction of the vesicular-arbuscular mycorrhizae of maize with extractable soil phosphorus levels and nitrogen-potassium fertilizersBiol. Fert. Soils8307310Google Scholar
  17. Hamel, C, Dalpè, Y, Lapierre, C, Simard, R R, Smith, D L 1994Composition of the vesicular arbuscular mycorrhizal fungi population in an old meadow as affected by pH, phosphorus and soil disturbanceAgric. Ecosyst. Environ.49223231Google Scholar
  18. Inskeep, W P 1989Adsorption of sulfate by kaolinite and amorphous iron oxide in the presence of organic ligandsJ. Environ. Qual.18379385Google Scholar
  19. Johnson, N C 1993Can fertilization of soil select less matualistic mycorrhizae?Ecol. Applic.3749757Google Scholar
  20. Johnson, N C, Pfleger, F L 1992

    Vesicular-arbuscular mycorrhizae and cultural practices

    Bethlenfalvay, G JLinderman, R G eds. Mycorrhizae in Sustainable AgricultureASA Special Publication 54: ASACSSA and SSSA, Madison7199
    Google Scholar
  21. Joner, E J 2000The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean cloverBiol. Fertil. Soils32435440Google Scholar
  22. Kahiluoto, K, Ketoja, E, Vestberg, M, Saarela, I 2001Promotion of AM utilization through reduced P fertilization 2. Field studiesPlant Soil2316579Google Scholar
  23. Khan, A G 1972The effect of vesicular-arbuscular mycorrhizal associations on growth of cereals. I. Effects on maize growthNew Phytol.71613619Google Scholar
  24. Koide, R T, Li, M 1990On host regulation of the vesicular-arbuscular mycorrhizal symbiosisNew Phytol.1145974Google Scholar
  25. Kurle, J E, Pfleger, F L 1994Arbuscular mycorrhizal fungal spore poppulations response to conversion between low-input and conventional management practices in a corn-soybean rotationAgron. J.86467475Google Scholar
  26. Kurle, J E, Pfleger, F L 1996Management influences on arbuscular mycorrhizal fungal species composition in a corn-soybean rotationAgron. J.88155161Google Scholar
  27. Lindsay, W L, Norvel, W A 1978Development of a DTPA soil test for zinc, iron, manganese and copperSoil Sci. Soc. Am. J.42421428Google Scholar
  28. Lu, S, Miller, M H 1989The role of VA mycorrhizae in the absorption of P and Zn by maize in field and growth chamber experimentsCan. J. Soil Sci.6997109Google Scholar
  29. Medeiros, C A B, Clark, R B, Ellis, J R 1994Growth and nutrient uptake of sorghum cultivated with vesicular-arbuscular mycorrhiza isolates at varying pHMycorrhiza4185191Google Scholar
  30. Marschner H 1995 Mineral Nutrition of Higher Plants. 2nd ed. Academic Press. 889 pGoogle Scholar
  31. Miller, M H 2000Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studiesCan. J. Plant Sci.804752Google Scholar
  32. Molles M C 1999 Ecology: concepts and applications. WCB McGraw-Hill, 1999. 509 pGoogle Scholar
  33. Olsen, S R, Dean, L A 1965

    Phosphorus

    Black, C AEvans, D DWhite, J LEnsminger, L EClark, P E eds. Methods of Soil Analysis. Part 2: Chemical and Microbiological PropertiesAmer. Soc. Agron., Inc.Madison, Wisconsin10351049
    Google Scholar
  34. Olsson, P A, Baath, E, Jakobsen, I 1997Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signaturesAppl. Env. Microbiol.6335313538Google Scholar
  35. Peech, M 1965

    Hydrogen-ion activity

    Black, C AEvans, D DWhite, JLEnsminger, L EClark, P E eds. Methods of Soil Analysis. Part 2: Chemical and Microbiological PropertiesAmer. Soc. Agron., Inc.Madison, Wisconsin914926
    Google Scholar
  36. Pielou, E C 1975Ecological DiversityJohn Wiley & SonsNew York385Google Scholar
  37. Pitukdatham P, Suwanarit A, Suwanarit P, Hoefner W 2004 Effects of Arbuscular Mycorrhizal Fungal Species and Nitrogen and Phosphorus Fertilizers on Maize and Root Colonization and Spore Production. Thai J. Argic. Sci. (in press)Google Scholar
  38. Pratt, P F 1965

    Potassium

    Black, C AEvans, D DWhite, J LEnsminger, L EClark, P E eds. Methods of Soil Analysis Part 2: Chemical and Microbiological PropertiesAmer. Soc. Agron., Inc.Madison, Wisconsin10221034
    Google Scholar
  39. Prietzel, J, Weick, C, Korintenberg, J, Seybold, G, Thumerer, T, Treml, B 2001Effects of repeated (NH4)2SO4 application on sulphur pools in soil, soil microbial biomass, and ground vegetation of two watersheds in the Black Forest/GermanyPlant Soil230287305CrossRefGoogle Scholar
  40. Ratnayake, M, Leonard, R T, Menge, J A 1978Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formationNew Phytol.81543553Google Scholar
  41. Schenck, N C, Perez, Y 1988Manual for the identification of VA mycorrhizal fungi. 2nd edSynergistic publicationsGainesville, FL241Google Scholar
  42. Sieverding, E 1990Ecology of vesicular-arbuscular mycorrhiza in tropical agrosystemsAgric. Ecosyst. Environ.29369390Google Scholar
  43. Sieverding, E 1991Vesicular-arbuscular mycorrhiza management in tropical agrosystemsTechnical CooperationFederal Republic of Germany, Germany372Google Scholar
  44. Soil Survey Staff 1998 Keys to Soil Taxonomy. USDA, NRCS. Available on-line at http://soils.usda.gov/technical/classification/tax_keys/Google Scholar
  45. Statsoft 1999 STATISTICA for Windows. Statsoft Inc, Tulsa, OklahomaGoogle Scholar
  46. Subramanian, K S, Charest, C, Dwyer, L M, Hamilton, R I 1997Effect of arbuscular mycorrhizae on leaf water potential, sugar content, and P content during drought and recovery of maizeCan. J. Bot.7515821591Google Scholar
  47. Suwanarit A , Suwannarat C, Waitruadrok T 1986 Comparative effects of urea and ammonium sulfate on maize grown on Reddish Brown Lateritic soil, pp. 138–140. In: 1986 Annual Report, Thailand National Corn and Sorghum Program, Kasetsart University, Department of Agriculture, Dept. of Agricultural Extension and CIMMYT, Bangkok, ThailandGoogle Scholar
  48. Suwanarit, A, Suwanchatri, I, Rungchuang, J, Verasan, V 2000Residual effects of 20 annual applications of ammonium sulfate and triple superphosphate for corn on properties and productivity of Oxic PaleustultsKasetsart J.344051Google Scholar
  49. Sylvia, D M 1999

    Fundamentals and applications of arbuscular mycorrhizae: A ’biofertilizer” perspective

    Siqueira, J OMoreira, F M SLopes, A SGuiherme, L RFaquin, VFurtini Neto, A ECarvalho, J G eds. Soil Fertility, Soil Biology, and Plant Nutrition InterrelationshipsUniv of FloridaGainesville, FL705723
    Google Scholar
  50. Vivekanandan, M, Fixen, P E 1991Cropping systems effects on mycorrhizal colonization, early growth, and phosphorus uptake of maizeSoil Sci. Soc. Am. J.55136140Google Scholar
  51. Wacker, T L, Safir, G R, Stephenson, S 1999Evidence for succession of mycorrhizal fungi in Michigan asparagus fieldsActa Hort.271273278Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Nidchaporn Na Bhadalung
    • 1
  • Amnat Suwanarit
    • 1
  • Bernard Dell
    • 2
  • Omsub Nopamornbodi
    • 3
  • Arinthip Thamchaipenet
    • 4
  • Jarong Rungchuang
    • 5
  1. 1.Department of Soil ScienceKasetsart UniversityBangkokThailand
  2. 2.School of Biological Sciences and BiotechnologyMurdoch UniversityPerthAustralia
  3. 3.Department of AgricultureChatuchakThailand
  4. 4.Department of GeneticsKasetsart UniversityBangkokThailand
  5. 5.National Corn and Sorghum Research CentreNakhson RatchasimaThailand

Personalised recommendations